Sampling and Identification of Operators and Applications
运营商和应用程序的抽样和识别
基本信息
- 批准号:111001434
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Herein, we describe recent results and future research directions in the development of a sampling theory for operators. While the classical sampling theorem asserts that functions that are bandlimited to an interval can be recovered from discrete samples taken on a sufficiently fine sampling grid, sampling results for operators allow for the recovery of pseudodifferential operators with bandlimited Kohn--Nirenberg symbols based on their response to a discretely supported distribution. In the first phase of the project Sampling and Identification of Operators and Applications (SamOA), we built on previous insights and obtained explicit reconstruction formulas for operators whose bandlimitation is described by a bounded Jordan domain of Lebesgue measure less than one. Our work includes stochastic operators where the condition that the Kohn-Nirenberg symbol is bandlimited is replaced by a support condition on the covariance of the now stochastic spreading function of an operator. Our results allowed for the development of two estimators for Wide Sense Stationary with Uncorrelated Scattering channels (WSSUS, a widely used assumption on communications channels in electrical engineering). One of these estimators is applicable to channels with arbitrarily large, but bounded support of the covariance function.In addition to the above, approximation theoretic operator sampling results were obtained as part of SamOA. These show that Schwartz class functions can be used as identifiers when we seek to obtain satisfactory information on the characteristics of bandlimited operators in relevant, time and frequency limited, transmission bands.Last, but not least, we discussed a finite dimensional analogue of the above in a series of papers. The finite dimensional identification problem is intimately linked to the construction of time-frequency structured measurement matrices for compressive sensing applications. Indeed, our results include performance guarantees for Basis Pursuit (l^1-minimization) to recover sufficiently sparse vectors using time-frequency structured measurements.Predominately, the results described above are based on regularly spaced sampling nodes (and periodic weights), that is, on identifiers supported on a lattice in Euclidean space (or mollified versions thereof). In the herein proposed continuation, we focus on irregular sampling sets. In particular, we seek to establish universal sampling sets that are applicable to operators of a given bandwidth, for example, using quasicrystals as established as universal sampling sets for functions by Meyer and Matei, or alternative universal sampling sets as those constructed by Olevskii and Ulanovskii. Moreover, we plan to examine probabilistic sampling, that is, sampling sets that are generated by random variables, and establish connections to learning theory.
在这里,我们描述了最近的结果和未来的研究方向在运营商的抽样理论的发展。虽然经典的采样定理断言,功能,带宽限制到一个区间,可以恢复从离散样本上采取足够精细的采样网格,采样结果的运营商允许恢复pseudodiomatic运营商与带宽限制科恩-尼伦伯格符号的基础上,他们的响应离散支持分布。在该项目的第一阶段采样和识别的运营商和应用程序(SamOA),我们建立在以前的见解,并获得明确的重建公式的运营商,其带宽限制是由一个有界的约旦域勒贝格测量小于1。我们的工作包括随机运营商的条件下,科恩-尼伦伯格符号是带限的支持条件的协方差现在随机扩展函数的运营商取代。 我们的研究结果允许开发两个估计的广义平稳与不相关的散射信道(WSSUS,在电气工程中广泛使用的通信信道的假设)。其中一个估计器适用于具有任意大但有界协方差函数支持的信道。除此之外,作为SamOA的一部分,还获得了近似理论算子采样结果。这些表明,Schwartz类函数可以用作标识符时,我们寻求获得满意的信息,在相关的,时间和频率有限的,transmission bands.Last,但并非最不重要的是,我们讨论了有限维模拟上述一系列文件。有限维识别问题与用于压缩传感应用的时频结构测量矩阵的构造密切相关。实际上,我们的结果包括基追踪(l^1-最小化)的性能保证,以使用时频结构化测量来恢复足够稀疏的向量。主要地,上述结果基于规则间隔的采样节点(和周期性权重),即,基于在欧几里得空间(或其缓和版本)中的晶格上支持的标识符。在这里提出的延续,我们专注于不规则的采样集。特别是,我们寻求建立通用的采样集,适用于运营商的一个给定的带宽,例如,使用准晶体作为建立通用采样集的功能由迈耶和马泰,或替代通用采样集的Olevskii和Ulanovskii构建。此外,我们计划研究概率抽样,即由随机变量生成的抽样集,并建立与学习理论的联系。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sampling of Operators
运营商抽样
- DOI:10.1007/s00041-013-9269-2
- 发表时间:2013
- 期刊:
- 影响因子:1.2
- 作者:G. E. Pfander.
- 通讯作者:G. E. Pfander.
The restricted isometry property for time–frequency structured random matrices
- DOI:10.1007/s00440-012-0441-4
- 发表时间:2010-10
- 期刊:
- 影响因子:2
- 作者:H. Rauhut;J. Romberg;J. Tropp
- 通讯作者:H. Rauhut;J. Romberg;J. Tropp
Identification of stochastic operators
随机算子的识别
- DOI:10.1016/j.acha.2013.05.001
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:G. E. Pfander;P. Zheltov
- 通讯作者:P. Zheltov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Götz Eduard Pfander, Ph.D.其他文献
Professor Götz Eduard Pfander, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Götz Eduard Pfander, Ph.D.', 18)}}的其他基金
Estimation of covariance matrices satisfying sparsity priors
满足稀疏先验的协方差矩阵的估计
- 批准号:
273496688 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Analysis and design of COFDM multicarrier modulation techniques in view of transmission stability in time variant channels
考虑时变信道传输稳定性的COFDM多载波调制技术分析与设计
- 批准号:
5426295 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
Sampling theory and bases of exponentials: novel techniques in the foundations of communications
采样理论和指数基础:通信基础中的新技术
- 批准号:
437115893 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
相似海外基金
I-Corps: Fisheries Management Through Species Identification Technology
I-Corps:通过物种识别技术进行渔业管理
- 批准号:
2348772 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase II: FlashPCB Service Commercialization and AI Component Package Identification
SBIR第二阶段:FlashPCB服务商业化和AI组件封装识别
- 批准号:
2335464 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Direct identificationによる膵癌HLAリガンドームの解明
通过直接鉴定阐明胰腺癌 HLA 配体组
- 批准号:
24K10425 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Identification of genes responsible for the resistance to first line anti-myeloma therapeutics
鉴定导致一线抗骨髓瘤治疗耐药的基因
- 批准号:
24K11532 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enzymeless nanopore proteoform identification
无酶纳米孔蛋白形式鉴定
- 批准号:
EP/Z000351/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Developing a new method for the identification of cancer in archaeological populations
开发一种鉴定考古群体中癌症的新方法
- 批准号:
2341415 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
-- - 项目类别: