Sampling theory and bases of exponentials: novel techniques in the foundations of communications
采样理论和指数基础:通信基础中的新技术
基本信息
- 批准号:437115893
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Sampling theory is a vibrant area of mathematical investigation and it continues to play a central role in applied sciences and electrical engineering. In recent years, fundamental progress has been achieved in the classical sampling theory and the theory of exponential bases and frames. To this end, new constructive methods were developed and functional analytic insights such as those stemming from the groundbreaking resolution of the Kadison-Singer problem were applied.This project builds on these new results, which include newly obtained properties of Riesz bases and frames of exponentials on Paley-Wiener spaces on finite unions of intervals and/or on finite measure sets, and the lack of uniform convergence of the Nyquist reconstruction formula in Paley-Wiener spaces of functions with non-square-integrable Fourier transforms. We seek Riesz bases and frames of exponentials with additional properties and refine results that are based on the positive solution of the Kadison-Singer problem. We also seek to obtain constructive versions of the existence results that are available today. Furthermore, we extend results on the lack of uniform convergence of Nyquist reconstruction formulas to irregular sampling formulas, for example, those developed by Papoulis. We expect that multiple related research foci in this proposal will lead to significant cross fertilization.The questions considered herein address the foundations of communications engineering and are directly relevant for current tasks in data transmission. For example, the Balian-Low theorem for subspaces shows that avoiding critical density does not fully mitigate the Balian-Low phenomenon. This may have impact on the fifth generation mobile communications where time-frequency transmission methods such as orthogonal frequency division multiplexing are employed. We are guided by these considerations and hope to benefit from our collaboration with electrical engineers working in sampling theory and communications.
采样理论是数学研究的一个充满活力的领域,它继续在应用科学和电气工程中发挥核心作用。 近年来,经典抽样理论和指数基框架理论都取得了重要进展。为此,开发了新的建设性方法,并应用了诸如Kadison-Singer问题的突破性解决所产生的功能分析见解。该项目建立在这些新结果的基础上,其中包括新近获得的关于Paley-Wiener空间上的有限区间和/或有限测度集上的Riesz基和指数框架的性质,在非平方可积傅立叶变换函数的Paley-Wiener空间中,Nyquist重构公式缺乏一致收敛性。我们寻求Riesz基地和框架的指数与其他属性和完善的结果是基于积极的解决方案的Kadison-Singer问题。我们还寻求获得今天可用的存在结果的建设性版本。 此外,我们扩展结果缺乏一致收敛的Nyquist重建公式不规则采样公式,例如,开发的Papoulis。我们期望本提案中的多个相关研究焦点将导致显著的交叉施肥。本文考虑的问题涉及通信工程的基础,并与当前数据传输任务直接相关。 例如,子空间的巴利安-洛定理表明,避免临界密度并不能完全缓解巴利安-洛现象。这可能对第五代移动的通信具有影响,在第五代移动通信中,采用诸如正交频分复用的时间-频率传输方法。我们以这些考虑为指导,并希望从我们与从事采样理论和通信的电气工程师的合作中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Götz Eduard Pfander, Ph.D.其他文献
Professor Götz Eduard Pfander, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Götz Eduard Pfander, Ph.D.', 18)}}的其他基金
Estimation of covariance matrices satisfying sparsity priors
满足稀疏先验的协方差矩阵的估计
- 批准号:
273496688 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Sampling and Identification of Operators and Applications
运营商和应用程序的抽样和识别
- 批准号:
111001434 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Analysis and design of COFDM multicarrier modulation techniques in view of transmission stability in time variant channels
考虑时变信道传输稳定性的COFDM多载波调制技术分析与设计
- 批准号:
5426295 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combinatorial descriptions of crystal bases and applications to the cluster theory
晶体基的组合描述及其在簇理论中的应用
- 批准号:
20J00186 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Comprehensive Study on American Novels set on Okinawa
以冲绳为背景的美国小说综合研究
- 批准号:
20K00442 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory and Applications of Localized Kernel Bases to Meshfree Methods
无网格方法局部化核基的理论与应用
- 批准号:
1813091 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Development of new methods in the theory of convex polytopes by combining new concepts of discrete geometry and the theory of Groebner bases
结合离散几何新概念和 Groebner 基理论开发凸多胞形理论新方法
- 批准号:
18H01134 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Digging deeper into effective field theory
深入挖掘有效场论
- 批准号:
18K13533 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Canonical bases in equivariant K-theory and their applications
等变K理论的规范基础及其应用
- 批准号:
17K14163 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Localized Kernel Bases: Theory and Applications to Meshless Methods
本地化内核基础:无网格方法的理论和应用
- 批准号:
1514789 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Construction of a theory deriving super-versatility cross-media bases for breaking limitations in various image processing fields
构建超通用性跨媒体基础理论,突破各种图像处理领域的限制
- 批准号:
15K12023 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Representation Theory, Cluster algebras, and Canonical Bases
表示论、簇代数和规范基
- 批准号:
1403527 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Cluster Algebras, Atomic Bases, and String Theory
簇代数、原子基和弦理论
- 批准号:
1362980 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant