Homology of Monomial and Toric Ideals
单项式和环面理想的同调
基本信息
- 批准号:9700564
- 负责人:
- 金额:$ 5.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kleiman 9700564 This project is concerned with free resolutions related to monomial ideals and toric varieties. It is in the interface between commutative algebra, algebraic geometry and combinatorics. The goal of the project is to build minimal free resolutions in some special cases, construct non-minimal structured resolutions, and obtain bounds on Betti numbers. Some of the problems are closely related to Groebner basis theory and integer programming. This is research in the field of algebraic geometry. Algebraic geometry is one of the oldest parts of modern mathematics, but one which has had a revolutionary flowering in the past quarter-century. In its origin, it treated figures that could be defined in the plane by the simplest equations, namely polynomials. Nowadays the field makes use of methods not only from algebra, but from analysis and topology, and conversely is finding application in those fields as well as in physics, theoretical computer science, and robotics.
Kleiman 9700564这个项目涉及与单项理想和环面簇有关的自由分解。它处于交换代数、代数几何和组合学的交界处。该项目的目标是在某些特殊情况下构造最小自由归结,构造非最小结构化归结,并获得Betti数的界。其中一些问题与Groebner基理论和整数规划密切相关。这是在代数几何领域的研究。代数几何是现代数学中最古老的部分之一,但在过去的25年里,它已经取得了革命性的成就。在它的起源中,它处理的是可以在平面上用最简单的方程定义的图形,即多项式。如今,该领域不仅使用代数的方法,而且使用分析和拓扑学的方法,反过来,在这些领域以及物理、理论计算机科学和机器人中也找到了应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Kleiman其他文献
Steven Kleiman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Kleiman', 18)}}的其他基金
Relative De Rham Complexes, Families of Varieties
相关 De Rham 复合体,品种家族
- 批准号:
9600089 - 财政年份:1996
- 资助金额:
$ 5.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-Abelian Hodge Theory and Applications
数学科学:非阿贝尔霍奇理论及其应用
- 批准号:
9500712 - 财政年份:1995
- 资助金额:
$ 5.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Algebraic Geometry
数学科学:代数几何研究
- 批准号:
9400918 - 财政年份:1994
- 资助金额:
$ 5.47万 - 项目类别:
Continuing grant
Mathematical Sciences: Research in Algebraic Geometry
数学科学:代数几何研究
- 批准号:
9106444 - 财政年份:1991
- 资助金额:
$ 5.47万 - 项目类别:
Continuing grant
Joint Workshop in Algebraic Geometry; Rio de Janeiro, April 16-20, 1990 (Brazil STI)
代数几何联合研讨会;
- 批准号:
9002516 - 财政年份:1990
- 资助金额:
$ 5.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Algebraic Geometry
数学科学:代数几何研究
- 批准号:
8801743 - 财政年份:1988
- 资助金额:
$ 5.47万 - 项目类别:
Continuing grant
Mathematical Sciences: Research in Algebraic Geometry
数学科学:代数几何研究
- 批准号:
8502781 - 财政年份:1985
- 资助金额:
$ 5.47万 - 项目类别:
Continuing Grant
相似国自然基金
代数的 Leading homogeneous (monomial) 代数及其应用研究
- 批准号:10971044
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Square-free Monomial Cohen-Macaulay Ideals
无平方单项式科恩-麦考利理想
- 批准号:
553845-2020 - 财政年份:2020
- 资助金额:
$ 5.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Powers of Monomial Ideals
单项式理想的力量
- 批准号:
550963-2020 - 财政年份:2020
- 资助金额:
$ 5.47万 - 项目类别:
University Undergraduate Student Research Awards
Parallel techniques in the context of change of monomial ordering for Grobner basis
格罗布纳基单项式排序变化背景下的并行技术
- 批准号:
542270-2019 - 财政年份:2019
- 资助金额:
$ 5.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
On finite generation of symbolic Rees rings of defining ideals of space monomial curves
空间单项式曲线定义理想的符号里斯环的有限生成
- 批准号:
18K03226 - 财政年份:2018
- 资助金额:
$ 5.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relations between free resolutions and the arithmetical rank for a monomial ideal
单项式理想的自由分辨率与算术等级之间的关系
- 批准号:
24740008 - 财政年份:2012
- 资助金额:
$ 5.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Monomial ideals in polynomial rings
多项式环中的单项式理想
- 批准号:
23540060 - 财政年份:2011
- 资助金额:
$ 5.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Primitivity of Monomial Algebras
单项代数的本原性
- 批准号:
367050-2008 - 财政年份:2008
- 资助金额:
$ 5.47万 - 项目类别:
University Undergraduate Student Research Awards
Monomial representation of solvable Lie groups
可解李群的单项式表示
- 批准号:
11640189 - 财政年份:1999
- 资助金额:
$ 5.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homology of Monomial and Toric Ideals
单项式和环面理想的同调
- 批准号:
9970334 - 财政年份:1999
- 资助金额:
$ 5.47万 - 项目类别:
Standard Grant
Mathematical Sciences: (1) Extremal Cayley Digraphs on Finite Groups; (2) Monomial Conjecture - A Computational Approach
数学科学:(1)有限群上的极值凯莱有向图;
- 批准号:
9406959 - 财政年份:1994
- 资助金额:
$ 5.47万 - 项目类别:
Standard Grant














{{item.name}}会员




