Topological Minors of Graphs
图的拓扑未成年人
基本信息
- 批准号:9700623
- 负责人:
- 金额:$ 5.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ding 9700623 This award provides funds for an investigation of three fundamental problems involving topological minors. The first problem is Robertson's double-path conjecture, which states that if a class G of graphs is closed under topological minors and is free of arbitrarily long double-paths, then G does not contain infinite antichains with respect t o the topological-minor relation. This is a fundamental conjecture in graph theory. It relates structural graph theory, combinatorial optimization, and classical combinatorics. The PI has made significant progress towards solving this conjecture, which includes, but is not limited to, proving the conjecture for all minor-closed classes of graphs and for the class of graphs of cutwidth at most three. He hopes that his past experience on this problem together with some of his new ideas will help him to settle this conjecture completely. The second problem is the edge version of Hajos' conjecture. Recently, the PI has established the edge version of Hadwiger's conjecture by identifying all minor- minimal graphs with chromatic index greater than n. Now he proposes to study topological-minor-minimal graphs with chromatic index greater than n. This is exactly the edge version of Hajos' conjecture, which claims that K_n is the only topological-minor-minimal graph with chromatic number greater than n. This problem relates not only to Hajos' conjecture and Hadwiger's conjecture, but also to Vizing's planar graph conjecture and several well-known results in this field. The third problem concerns unavoidable graphs of large crossing number. Crossing number is a typical graph parameter that is monotone with respect to the topological-minor relation but not with respect to the minor relation. A natural problem concerning this parameter is to understand what makes the crossing number big. One obvious cause is a high genus for the graph. There are also other causes. For example, for some large n, the containment of a topological minor D_ n can make the crossing number large. The PI proposes to characterize the complete list of unavoidable graphs of large crossing number. This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research.
Ding 9700623本奖项为涉及拓扑未成年人的三个基本问题的研究提供资金。第一个问题是罗伯逊双径猜想,即如果一类图G在拓扑次次下是封闭的,并且不存在任意长的双径,则G对于拓扑次次关系不包含无限反链。这是图论中的一个基本猜想。它涉及结构图论、组合优化和经典组合学。PI在解决这个猜想方面取得了重大进展,其中包括但不限于证明了所有小闭图类和切宽最多为3的图类的猜想。他希望他过去在这个问题上的经验和他的一些新想法能帮助他彻底解决这个猜想。第二个问题是Hajos猜想的边缘版本。最近,PI通过识别所有色数大于n的次极小图,建立了哈德维格猜想的边版。现在他提出研究色数大于n的拓扑次极小图。这正是哈德维格猜想的边版,它宣称K_n是唯一色数大于n的拓扑次极小图。这个问题不仅涉及哈德维格猜想和哈德维格猜想,还有维津的平面图猜想和这一领域的几个著名成果。第三个问题涉及不可避免的大交叉数图。交叉数是一个典型的图参数,它对拓扑小关系是单调的,但对拓扑小关系不是单调的。关于这个参数的一个自然问题是理解是什么使交叉数变大。一个明显的原因是图的高属。还有其他原因。例如,对于某个较大的n,包含一个拓扑小项D_ n可以使交叉数较大。PI提出描述大交叉数不可避免图的完整列表。这项研究属于组合学的一般领域。组合学的目标之一是找到研究离散对象集合如何排列的有效方法。离散系统的行为对现代通信极为重要。例如,大型网络的设计,比如那些出现在电话系统中的网络,以及计算机科学中处理离散对象集的算法设计,这就利用了组合研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoli Ding其他文献
Strengthened chain theorems for different versions of 4-connectivity
- DOI:
10.1016/j.disc.2022.113129 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Guoli Ding;Chengfu Qin - 通讯作者:
Chengfu Qin
A chain theorem for 4-connected graphs
- DOI:
10.1016/j.jctb.2018.07.005 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Chengfu Qin;Guoli Ding - 通讯作者:
Guoli Ding
Graphs without large $K_{2,n}$-minors
没有大$K_{2,n}$-次要的图
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Guoli Ding - 通讯作者:
Guoli Ding
Minimal k-Connected Non-Hamiltonian Graphs
最小 k 连接非哈密顿图
- DOI:
10.1007/s00373-018-1874-z - 发表时间:
2018 - 期刊:
- 影响因子:0.7
- 作者:
Guoli Ding;E. Marshall - 通讯作者:
E. Marshall
Guoli Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoli Ding', 18)}}的其他基金
Some problems in topological graph theory
拓扑图论的几个问题
- 批准号:
1001230 - 财政年份:2010
- 资助金额:
$ 5.19万 - 项目类别:
Standard Grant
Connectivity and Minors in Graph Theory
图论中的连通性和辅修
- 批准号:
9970329 - 财政年份:1999
- 资助金额:
$ 5.19万 - 项目类别:
Standard Grant
相似海外基金
Implementation and impact of the ban on the sale of ultra-processed foods to minors in Mexico
墨西哥向未成年人销售超加工食品禁令的实施及影响
- 批准号:
MR/X004171/1 - 财政年份:2023
- 资助金额:
$ 5.19万 - 项目类别:
Research Grant
From 'inclusion' to 'ownership': Learnings from a care provision program for unaccompanied minors in Montreal
从“包容”到“所有权”:蒙特利尔无人陪伴未成年人护理服务项目的经验教训
- 批准号:
474592 - 财政年份:2022
- 资助金额:
$ 5.19万 - 项目类别:
Studentship Programs
Association of Canada's Provincial Bans on Electronic Cigarette Sales to Minors With Electronic Cigarette Use Among Youths
加拿大各省禁止向未成年人销售电子烟 青少年使用电子烟
- 批准号:
421912 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
Investigating the relationship between head injury and aggression in minors over time
随着时间的推移调查未成年人头部受伤与攻击行为之间的关系
- 批准号:
2445620 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
Studentship
The impact and effectiveness of mentoring projects with unaccompanied minors
无人陪伴未成年人辅导项目的影响和有效性
- 批准号:
2434327 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
Studentship
The investigation of change mechanisms in trauma-focused interventions for traumatized refugee minors
受创伤难民未成年人创伤干预措施变革机制的调查
- 批准号:
447787115 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
WBP Fellowship
Exploring the lived experience of death and dying for mature minors in Canada.
探索加拿大成熟未成年人的死亡和临终经历。
- 批准号:
439756 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
Operating Grants
Fast Algorithm for Enumerating Graph Minors in a Graph
枚举图中次要图的快速算法
- 批准号:
19J21000 - 财政年份:2019
- 资助金额:
$ 5.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Graph minors, topological minors, and immersions
图次要项、拓扑次要项和浸入式
- 批准号:
1929851 - 财政年份:2018
- 资助金额:
$ 5.19万 - 项目类别:
Continuing Grant