Some problems in topological graph theory
拓扑图论的几个问题
基本信息
- 批准号:1001230
- 负责人:
- 金额:$ 19.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topological graph theory studies how graphs can be drawn on surfaces in different ways. One of its fundamental problems is to determine for each surface S the set F of minimal graphs that have a cross no matter how they are drawn on S. It follows from the celebrated result of Robertson and Seymour on Wagner?s conjecture that F is finite for every surface S. However, nothing is known about the elements of F, except when S is the sphere or the projective plane. Over the past twenty years, many attempts were made by many researchers yet no new F is completely determined. The PI proposes a different approach to this problem. Results generated from this proposal could lead to a characterization of core members of each F, which would essentially determine F since other members of F are sporadic unimportant graphs.The goal of this project is to understand the behavior of topological graph parameters such as genus and crossing number when the graph is well connected and is big. To achieve this goal, it will be necessary to study the interactions between connectivity, genus, and the size of the graph. A good understanding of such interactions would bring significant insights to the entire topological graph theory. Since surface graphs are so fundamental, these results could have very strong theoretical (on graph structures) and practical (on graph algorithms) impact in many areas of graph theory.
拓扑图论研究如何以不同的方式在表面上绘制图形。它的一个基本问题是确定每个曲面的极小图的集合F,这些极小图无论如何画在S上都有一个十字。这源于Robertson和Seymour关于Wagner的著名结果?S猜想F对每个曲面S都是有限的。然而,除了当S是球面或射影平面时,对F的元素一无所知。在过去的二十年里,许多研究人员做了许多尝试,但还没有一个新的F完全确定。PI提出了一种不同的方法来解决这个问题。由于F的其他成员是零星的不重要图,因此该结果可以得到每个F的核心成员的特征,这将本质上决定F。本项目的目标是了解当图很好地连通且较大时,拓扑图参数如亏格和交叉数的行为。为了实现这一目标,有必要研究连通性、亏格和图的大小之间的相互作用。很好地理解这种相互作用将给整个拓扑图理论带来重要的启示。由于曲面图是如此基本,这些结果可能在图论的许多领域中具有非常强的理论(关于图结构)和实践(对于图算法)的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoli Ding其他文献
Strengthened chain theorems for different versions of 4-connectivity
- DOI:
10.1016/j.disc.2022.113129 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Guoli Ding;Chengfu Qin - 通讯作者:
Chengfu Qin
A chain theorem for 4-connected graphs
- DOI:
10.1016/j.jctb.2018.07.005 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Chengfu Qin;Guoli Ding - 通讯作者:
Guoli Ding
Graphs without large $K_{2,n}$-minors
没有大$K_{2,n}$-次要的图
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Guoli Ding - 通讯作者:
Guoli Ding
Minimal k-Connected Non-Hamiltonian Graphs
最小 k 连接非哈密顿图
- DOI:
10.1007/s00373-018-1874-z - 发表时间:
2018 - 期刊:
- 影响因子:0.7
- 作者:
Guoli Ding;E. Marshall - 通讯作者:
E. Marshall
Guoli Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoli Ding', 18)}}的其他基金
Connectivity and Minors in Graph Theory
图论中的连通性和辅修
- 批准号:
9970329 - 财政年份:1999
- 资助金额:
$ 19.17万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
$ 19.17万 - 项目类别:
Studentship
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 19.17万 - 项目类别:
Standard Grant
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 19.17万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CRII: AF: Enriched Topological Summaries for Inverse Problems
CRII:AF:反问题的丰富拓扑摘要
- 批准号:
1850052 - 财政年份:2019
- 资助金额:
$ 19.17万 - 项目类别:
Standard Grant
Topological Methods for Discrete Problems
离散问题的拓扑方法
- 批准号:
1855591 - 财政年份:2019
- 资助金额:
$ 19.17万 - 项目类别:
Continuing Grant
From Topological Insulators to Hybrid Inverse Problems
从拓扑绝缘体到混合逆问题
- 批准号:
1908736 - 财政年份:2019
- 资助金额:
$ 19.17万 - 项目类别:
Standard Grant
Research on dynamic geometric problems and computational topological algorithms
动态几何问题与计算拓扑算法研究
- 批准号:
16K00024 - 财政年份:2016
- 资助金额:
$ 19.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogeneous structures, constraint satisfaction problems, and topological clones
同质结构、约束满足问题和拓扑克隆
- 批准号:
280296726 - 财政年份:2015
- 资助金额:
$ 19.17万 - 项目类别:
Research Grants
Topological and Geometrical Problems in Soft Matter
软物质中的拓扑和几何问题
- 批准号:
1262047 - 财政年份:2013
- 资助金额:
$ 19.17万 - 项目类别:
Continuing Grant
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
- 批准号:
238895-2006 - 财政年份:2012
- 资助金额:
$ 19.17万 - 项目类别:
Discovery Grants Program - Individual