Conference: Higher dimensional algebraic geometry

会议:高维代数几何

基本信息

  • 批准号:
    2327037
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

This award supports participation in the conference "Higher dimensional algebraic geometry" which will take place at the University of California San Diego from January 10 - 14, 2024. The conference is organized by Paolo Cascini (Imperial College), Brian Lehman (Boston College), Dragos Oprea (University of California San Diego, local organizer) and Chenyang Xu (Princeton University). The event will feature talks by approximately 25 leading mathematicians. There will also be opportunities for early-career mathematicians to disseminate their work. The conference will spotlight the latest breakthroughs in birational geometry and higher dimensional algebraic geometry. The past few years have witnessed significant progress in various subdisciplines of higher-dimensional algebraic geometry. However, due to the pandemic, there have been limited opportunities to disseminate these advances. The current conference seeks to remedy this situation. It also aims to foster collaborations and to facilitate connections within the mathematical community. This award will provide partial support to the travel expenses of mathematicians who do not have federal support or who are students, postdoctoral researchers, or belong to under-represented groups. Algebraic varieties are geometric objects defined by polynomial equations. Understanding the structure of algebraic varieties is a central question in algebraic geometry with far-reaching implications in nearby fields (commutative algebra, differential geometry, symplectic geometry, mathematical physics, computational geometry, number theory, etc). In birational geometry, the focus is on classifying complex projective varieties up to birational equivalence. The Minimal Model Program aims to generalize the classification results in dimension two to higher-dimensional varieties. The field was profoundly transformed by the work of James McKernan and his collaborators. The topics of the conference will include some of the most exciting recent advances in the area, such as K-stability and Fano varieties, MMP for foliations and Kahler varieties, boundedness results for Calabi-Yau varieties, birational geometry in positive and mixed characteristic, mirror symmetry and others. The website for the conference is https://lehmannb3.wixsite.com/james-60.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加将于2024年1月10日至14日在加州大学圣地亚哥分校举行的“高维代数几何”会议。会议由帝国理工学院的Paolo Cascini、波士顿学院的Brian Lehman、加州大学圣地亚哥分校的Dragos Oprea和普林斯顿大学的徐晨阳组织。这次活动将有大约25位顶尖数学家的演讲。初出茅庐的数学家也将有机会传播他们的工作。会议将集中展示二次几何和高维代数几何的最新突破。在过去的几年里,高维代数几何的各个分支学科取得了长足的进步。然而,由于大流行,传播这些进展的机会有限。本次会议旨在纠正这种情况。它还旨在促进合作,促进数学界之间的联系。这项奖励将为没有联邦资助的数学家、学生、博士后研究人员或属于代表性不足的群体的数学家的旅费提供部分支持。代数簇是由多项式方程定义的几何对象。理解代数簇的结构是代数几何中的一个中心问题,在附近的领域(交换代数、微分几何、辛几何、数学物理、计算几何、数论等)具有深远的影响。在二元几何中,重点是对复杂射影簇进行分类,直到二元等价。最小模型程序旨在将第二维度的分类结果推广到更高维度的品种。詹姆斯·麦科南和他的合作者的工作使这个领域发生了深刻的变化。会议的主题将包括该领域一些最令人兴奋的最新进展,如K-稳定性和Fano变元,叶和Kahler变元的最小二乘估计,Calabi-Yau变元的有界性结果,正特征和混合特征的双曲几何,镜像对称性等。会议的网站是https://lehmannb3.wixsite.com/james-60.This奖,它反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dragos Oprea其他文献

Sheaves on abelian surfaces and strange duality
  • DOI:
    10.1007/s00208-008-0262-z
  • 发表时间:
    2008-08-07
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Alina Marian;Dragos Oprea
  • 通讯作者:
    Dragos Oprea

Dragos Oprea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dragos Oprea', 18)}}的其他基金

Moduli Spaces, Tautological Rings, and Theta Functions
模空间、同义反复环和 Theta 函数
  • 批准号:
    1802228
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Wall-crossings in geometry and physics
FRG:合作研究:几何和物理学的跨越
  • 批准号:
    1262531
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Stable sheaves, stable quotients, stable pairs
事业:稳定的滑轮、稳定的商、稳定的副
  • 批准号:
    1150675
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
The geometry of the moduli spaces of morphisms and sheaves
态射和滑轮模空间的几何
  • 批准号:
    1001486
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Moduli spaces of morphisms and sheaves
态射和滑轮的模空间
  • 批准号:
    0852468
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Moduli spaces of morphisms and sheaves
态射和滑轮的模空间
  • 批准号:
    0701114
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
  • 批准号:
    2341368
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Combinatorial Objects and Actions in Higher Dimensional Settings
高维设置中的组合对象和动作
  • 批准号:
    2247089
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: K-stability and moduli spaces of higher dimensional varieties
职业:K-稳定性和高维簇的模空间
  • 批准号:
    2237139
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
  • 批准号:
    23K03110
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moduli of higher dimensional varieties and families of hypersurfaces
高维簇和超曲面族的模
  • 批准号:
    2302163
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Universal Aspects of Quantum Entanglement in Higher Dimensional Disordered Quantum Magnets
高维无序量子磁体中量子纠缠的普遍现象
  • 批准号:
    2310706
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Moduli and Arithmetic of Higher Dimensional Varieties
高维簇的模和算术
  • 批准号:
    2302550
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Finding Efficient Paths: Estimating the Lengths of Geodesics in Higher-Dimensional Spheres
寻找有效路径:估计高维球体中测地线的长度
  • 批准号:
    576186-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
K-Stability in Higher Dimensional Geometry
高维几何中的 K 稳定性
  • 批准号:
    2201349
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Guided Analytics for the Visual Exploration of Higher Dimensional Data
高维数据可视化探索的引导分析
  • 批准号:
    RGPIN-2022-03894
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了