Pilot Projects to Explore Large Data Sets
探索大数据集的试点项目
基本信息
- 批准号:9700867
- 负责人:
- 金额:$ 81.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-15 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large data sets are a given in modern industry, technology and science, and demand statistical attention to treat such central issues as detecting new patterns and relationships in a reliable and computationally feasible way. While the need is apparent, paths to bringing statistical science to bear on large data sets are not clearly mapped, in part because the sheer volume of the data prevents direct use of standard techniques. This proposal comprises a pair of interconnected pilot projects targeted to stimulate statistical science entree to this rapidly changing terrain. Each has a major industria;l partner, which has committed substantial resources. The projects and partners are Drug Discovery (Glaxo Wellcome, Research Traingle Park, NC) and Telecommunications Fraud (AT&T Laboratories, Murray Hill, NJ). In both instances there are specific scientific isues with high-stakes implications for the industry at large; each is speculative, in the sense that the path from data to information to knowledge is not known in advance. In drug discovery, the critical problem is to find new potent, non-toxic compounds. New statistical methods will be developed to search substantial data sets generated by recent advances in robotic synthesis and screening in order to identify key features of compounds, leading to better ones, in the presence of highly complex (and very high-dimensional) descriptions of the molecules. Within the hundreds of millions of long distance calls per day a small fraction are illegal or unauthorized, but result in costs of hundreds of millions of dollars annually. The problem is to detect and characterize, as rapidly as possible, patterns of transactions that are unusual, and potentially fraudulent, with special attention to controlling error rates (false alarms, failures to detect), an issue exacerbated by the enormous multiplicity of decisions made on a continual basis. The two problem areas have common features: sequential statistical search for important or unusual patters in the data; data that are highly complex in sheer quantity, in high-dimensional description of each data point, or in the diversity of their sources. Approaching these issues will be done by teams of cross-disciplinary researchers at distributed sites and closely managed by NISS. This GOALI project is jointly supported by the MPS Office of Multidisciplinary Activities (OMA) and the Division of Mathematical Sciences (DMS).
大型数据集在现代工业、技术和科学中是一个既定的事实,需要统计学的关注来处理诸如以可靠和计算上可行的方式检测新模式和关系等核心问题。 虽然这种需要是显而易见的,但将统计科学应用于大型数据集的途径并没有明确规划,部分原因是数据量庞大,无法直接使用标准技术。 该提案包括一对相互关联的试点项目,旨在刺激统计科学进入这一迅速变化的领域。 每一个都有一个主要的工业伙伴,投入了大量的资源。 这些项目和合作伙伴是药物发现(Glaxo Wellcome,Research Traingle Park,NC)和电信欺诈(AT T实验室,Murray Hill,NJ)。 在这两种情况下,都有对整个行业具有高风险影响的具体科学知识;每一种都是推测性的,因为从数据到信息再到知识的路径事先并不知道。 在药物发现中,关键的问题是找到新的有效的,无毒的化合物。 将开发新的统计方法来搜索机器人合成和筛选的最新进展所产生的大量数据集,以便在分子的高度复杂(和非常高维)描述的情况下确定化合物的关键特征,从而得到更好的化合物。 在每天数以亿计的长途电话中,有一小部分是非法或未经授权的,但每年造成数亿美元的费用。 问题是要尽可能快地发现和确定不寻常的、可能具有欺诈性的交易模式,特别注意控制错误率(误报、未能发现),由于不断作出的决定数量巨大,这一问题更加严重。 这两个问题领域具有共同的特征:对数据中重要或不寻常模式的顺序统计搜索;在绝对数量上高度复杂的数据,每个数据点的高维描述,或其来源的多样性。 这些问题的解决将由跨学科研究人员团队在分散的地点进行,并由NISS密切管理。 该GOALI项目由MPS多学科活动办公室(OMA)和数学科学部(DMS)联合支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerome Sacks其他文献
Design and Analysis for Modeling and Predicting Spatial Contamination
- DOI:
10.1023/a:1007504329298 - 发表时间:
1999-01-01 - 期刊:
- 影响因子:3.600
- 作者:
Markus Abt;William J. Welch;Jerome Sacks - 通讯作者:
Jerome Sacks
Health-related quality of life in the VA Feasibility Study on glycemic control and complications in Type 2 diabetes mellitus
- DOI:
10.1016/j.jdiacomp.2004.12.002 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:
- 作者:
Shailesh Pitale;Diane Kernan-Schroeder;Nicholas Emanuele;Clark Sawin;Jerome Sacks;Carlos Abraira; the VACSDM Study Group - 通讯作者:
the VACSDM Study Group
Indications for a home standing program for individuals with spinal cord injury.
针对脊髓损伤患者的家庭站立计划的适应症。
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
S. James Walter;G. Patrick Sola;Jerome Sacks;Yvonne Lucero;Edwin Langbein;Frances Weaver - 通讯作者:
Frances Weaver
Jerome Sacks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerome Sacks', 18)}}的其他基金
Framework for Statistical Evaluation of Complex Computer Models
复杂计算机模型统计评估框架
- 批准号:
0073952 - 财政年份:2000
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Workshop on Statistics and Information Technology
统计与信息技术研讨会
- 批准号:
9909164 - 财政年份:1999
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Postdoctoral Fellows at the National Institute of Statistical Sciences
国立统计科学研究所博士后
- 批准号:
9711365 - 财政年份:1997
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Analysis, Exploration and Inference in Large Educational Data Sets
大型教育数据集中的分析、探索和推理
- 批准号:
9350005 - 财政年份:1993
- 资助金额:
$ 81.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Fellows for Cross-Disciplinary Research in Statistics
数学科学:统计学跨学科研究研究员
- 批准号:
9208758 - 财政年份:1993
- 资助金额:
$ 81.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Cross-Disciplinary Workshops in Statistics
数学科学:统计学跨学科研讨会
- 批准号:
9203179 - 财政年份:1992
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Statistical Strategies for Complex Computer Models
数学科学:复杂计算机模型的统计策略
- 批准号:
9121554 - 财政年份:1991
- 资助金额:
$ 81.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Strategies for Complex Computer Models
数学科学:复杂计算机模型的统计策略
- 批准号:
9001726 - 财政年份:1990
- 资助金额:
$ 81.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Model Robust Design and Inference
数学科学:模型稳健设计和推理
- 批准号:
8703802 - 财政年份:1987
- 资助金额:
$ 81.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Supercomputing in Experimental Design
数学科学:实验设计中的超级计算
- 批准号:
8609819 - 财政年份:1987
- 资助金额:
$ 81.06万 - 项目类别:
Continuing Grant
相似海外基金
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Improving long term forecasts of tree growth in carbon farming projects
改善碳农业项目中树木生长的长期预测
- 批准号:
LP230100049 - 财政年份:2024
- 资助金额:
$ 81.06万 - 项目类别:
Linkage Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Iterative Improvement of a Program for Building Inclusive, Diverse, Equitable, Accessible Large-scale (IDEAL) Participatory Science Projects
迭代改进建立包容、多样化、公平、可访问的大型(IDEAL)参与性科学项目的计划
- 批准号:
2313996 - 财政年份:2024
- 资助金额:
$ 81.06万 - 项目类别:
Continuing Grant
Collaborative Research: ER2: The development of research ethics governance projects in computer science
合作研究:ER2:计算机科学中研究伦理治理项目的发展
- 批准号:
2419951 - 财政年份:2023
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Research Initiation: Understanding Team Diversity, Equity, and Inclusion in Undergraduate Engineering Design Projects
研究启动:理解本科工程设计项目中的团队多样性、公平性和包容性
- 批准号:
2306176 - 财政年份:2023
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Travel: Supplemental Funding Request: Collaboration Between Girl Power By Design and Managing Identities Projects
旅行:补充资金请求:Girl Power By Design 和管理身份项目之间的合作
- 批准号:
2331732 - 财政年份:2023
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Scaffolded Computing Projects for the Social Good
为社会公益服务的脚手架计算项目
- 批准号:
2315322 - 财政年份:2023
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Enhancing Climate Literacy in General Education Geoscience Courses through Individual Urban Heat Exposure Active Learning Projects
通过个人城市热暴露主动学习项目提高通识教育地球科学课程的气候素养
- 批准号:
2315364 - 财政年份:2023
- 资助金额:
$ 81.06万 - 项目类别:
Standard Grant
Linkage Projects - Grant ID: LP200301389
联动项目 - 拨款 ID:LP200301389
- 批准号:
ARC : LP200301389 - 财政年份:2023
- 资助金额:
$ 81.06万 - 项目类别:
Linkage Projects














{{item.name}}会员




