Efficient Numerical and Analytical Finite Element Analysis in Electromagnetics

电磁学中的高效数值和解析有限元分析

基本信息

  • 批准号:
    9702364
  • 负责人:
  • 金额:
    $ 7.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-15 至 1999-02-28
  • 项目状态:
    已结题

项目摘要

Efficient Multilevel Methods for Electromagnetic Finite Element Analysis Finite Element (FE) analysis is very widely used for computer simulation of electromagnetic fields in various electric machines and devices. Although significant progress has been achieved over the last two decades, considerable computational difficulties remain. For complex engineering electromagnetic problems, three dimensional FE meshes often have hundreds of thousands of elements or more and the computational time may be prohibitively high. As a result of the proposed project, the speed of electromagnetic FE analysis will be increased substantially. This will be achieved by implementing and employing Multilvel Preconditioners. The computational accuracy will be significantly improved by using the Fully Adaptive Multigrid algorithm. Applications of the proposed methodology to magnetic recording problems will be explored. In particular, efficient FE simulation of multiparticle systems typical for magnetic tapes should become possible. The ultimate goal is to make FE modeling considerably more accurate, fast and practical for engineering electromagnetic problems. This will facilitate analysis of electric machines, magnetic tapes and recording heads, and will have important implications for nondestructive testing, optimization, computer aided design, rapid prototyping, and in other areas.
有限元分析广泛应用于各种电机和设备的电磁场计算机模拟。虽然在过去二十年中取得了重大进展,但仍然存在相当大的计算困难。对于复杂的工程电磁问题,三维有限元网格通常有数十万个或更多的单元,计算时间可能非常高。该方案的实施将大大提高电磁有限元分析的速度。这将通过实施和使用多级预调节器来实现。采用全自适应多网格算法可显著提高计算精度。将探讨所提出的方法在磁记录问题上的应用。特别是,磁带多粒子系统的高效有限元模拟应该成为可能。最终目标是使有限元建模更加准确、快速和实用的工程电磁问题。这将有助于对电机、磁带和记录磁头的分析,并将对无损检测、优化、计算机辅助设计、快速原型制作和其他领域产生重要影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Tsukerman其他文献

A "Trefftz Machine" for Absorbing Boundary Conditions
用于吸收边界条件的“Trefftz 机器”
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Igor Tsukerman
  • 通讯作者:
    Igor Tsukerman
Discontinuous Galerkin methods with Trefftz approximations
具有 Trefftz 近似的不连续 Galerkin 方法
The Power of Trefftz Approximations: Finite Difference, Boundary Difference and Discontinuous Galerkin Methods; Nonreflecting Conditions and Non-Asymptotic Homogenization
Trefftz 近似的威力:有限差分、边界差分和不连续伽辽金方法;
  • DOI:
    10.1007/978-3-319-20239-6_5
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Kretzschmar;S. Schnepp;H. Egger;F. Ahmadi;Nabil Nowak;Vadim A. Markel;Igor Tsukerman
  • 通讯作者:
    Igor Tsukerman
Transparent boundary conditions for a discontinuous Galerkin Trefftz method
不连续 Galerkin Trefftz 方法的透明边界条件
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4
  • 作者:
    H. Egger;F. Kretzschmar;S. Schnepp;Igor Tsukerman;T. Weiland
  • 通讯作者:
    T. Weiland

Igor Tsukerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Tsukerman', 18)}}的其他基金

From Non-Asymptotic to Nonlocal Homogenization of Electromagnetic Metamaterials
电磁超材料从非渐近到非局域均匀化
  • 批准号:
    1620112
  • 财政年份:
    2016
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Standard Grant
Collaborative Research: A Computational Framework for Non-asymptotic Homogenization with Applications to Metamaterials
协作研究:非渐近均质化的计算框架及其在超材料中的应用
  • 批准号:
    1216927
  • 财政年份:
    2012
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Continuing Grant
Fast Adaptive Finite Element Methods for Electromagnetic Applications
电磁应用的快速自适应有限元方法
  • 批准号:
    9812895
  • 财政年份:
    1999
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Standard Grant

相似海外基金

Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Standard Grant
Combining numerical and analytical approaches for precision cosmology based on galaxy statistics
基于星系统计的精密宇宙学结合数值和分析方法
  • 批准号:
    22K03634
  • 财政年份:
    2022
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytical and Numerical Methods in Collisionless Kinetic Theory
无碰撞运动理论中的分析和数值方法
  • 批准号:
    2107938
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Standard Grant
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
  • 批准号:
    RGPIN-2016-04317
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Discovery Grants Program - Individual
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
  • 批准号:
    RGPIN-2016-04317
  • 财政年份:
    2020
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical and analytical approaches to random graphs
随机图的数值和分析方法
  • 批准号:
    554423-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 7.35万
  • 项目类别:
    University Undergraduate Student Research Awards
The area of physics that I would like to research is theoretical physics with a focus on condensed matter. I am open to both numerical and analytical
我想研究的物理学领域是理论物理学,重点是凝聚态物质。
  • 批准号:
    2284474
  • 财政年份:
    2019
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Studentship
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
  • 批准号:
    RGPIN-2016-04317
  • 财政年份:
    2019
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Discovery Grants Program - Individual
Shear behavior of RC members without shear reinforcement – development of a consistent experimental, analytical and numerical characterization methodology
无抗剪钢筋的 RC 构件的抗剪性能 â 开发一致的实验、分析和数值表征方法
  • 批准号:
    420545423
  • 财政年份:
    2019
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Research Grants
Studies of the matrix model for superstring theory by analytical and numerical methods
超弦理论矩阵模型的解析和数值研究
  • 批准号:
    18K03614
  • 财政年份:
    2018
  • 资助金额:
    $ 7.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了