Fast Adaptive Finite Element Methods for Electromagnetic Applications
电磁应用的快速自适应有限元方法
基本信息
- 批准号:9812895
- 负责人:
- 金额:$ 12.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-04-01 至 2001-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9812895TsukermanFinite Element (FE) analysis is very widely used for computer simulation of electromagnetic fields in various engineering applications. Although significant progress has been achieved over the last two decades, considerable computational difficulties remain. Very fine FE meshes, with hundreds of thousands of elements or more, are often needed to achieve a desirable accuracy, and the computational time may be prohibitively high.In the proposed project, a qualitative advancement in electromagnetic FE analysis will be achieved by applying adaptive finite element methods with multilevel preconditioners to a variety of electromagnetic problems in micromagnetics and geophysics. Fast adaptive methods will lead to a drastic increase in the speed and accuracy of electromagnetic field computation. The project is interdisciplinary in its nature and is intended to bridge the gap between state-of-the-art computational methods and electromagnetic applications.Preconditioned Hierarchical Basis Multigrid methods will be applied to magnetic recording problems, in particular to multiparticle systems (magnetic tapes, thin film media) and to magnetic recording heads. Magnetostatic ("demagnetizing") fields as well as dynamic processes described by the Landau-Lifshitz-Gilbert equation will be modeled. Multilevel Preconditioners will also be applied to static and eddy current problems in geophysics.Adaptive mesh refinement will be systematically implemented in several application areas. In micromagnetics, it will provide a way to trace the domain wall motion. In geophysical applications, for which very large computational domains are typical, adaptive mesh refinement should lead to a reasonable accuracy on meshes of manageable size.Mesh refinement strategies for tetrahedral elements and other types of elements will be evaluated on the basis of precise a priori characterization of element shapes proposed by the applicant: the general maximum eigenvalue criterion and, for first order tetrahedral elements, the minimum singular value condition for the element 'edge shape matrix'.Two graduate students are to be involved in the proposed project. An obvious benefit to these students will be their exposure to modern computational methods, electromagnetic field analysis and various practical applications.Several companies have already expressed significant interest in the applicant's research. Industrial collaboration with companies in magnetic recording industry, oil exploration services and finite element software is very likely to develop in the course of the proposed project.It is felt that the results of this project would be of both theoretical and practical significance: they would facilitate fast three-dimensional field analysis of magnetic recording media and heads, galvanic and induction logging in geophysics, and will have important implications for nondestructive testing, optimization, and in other areas.***
9812895TsukermanFinite有限元分析在各种工程应用中被广泛用于电磁场的计算机模拟。尽管在过去二十年中取得了重大进展,但仍存在相当大的计算困难。为了达到理想的精度,通常需要非常精细的有限元网格,单元数达到数十万或更多,而计算时间可能高得令人望而却步。在拟议的项目中,通过将带有多层预条件的自适应有限元方法应用于微磁学和地球物理中的各种电磁问题,将在电磁有限元分析方面取得质的进展。快速自适应方法将大大提高电磁场计算的速度和精度。该项目本质上是跨学科的,旨在弥合最先进的计算方法和电磁应用之间的差距。预条件分层基多重网格法将应用于磁记录问题,特别是多粒子系统(磁带、薄膜介质)和磁记录头。将模拟由Landau-Lifshitz-Gilbert方程描述的静磁场和动态过程。多层预处理器还将应用于地球物理中的静态和涡流问题。自适应网格加密将在多个应用领域系统地实施。在微磁学中,它将提供一种跟踪磁场壁运动的方法。在地球物理应用中,通常计算域很大,自适应网格加密应该在可管理的网格大小上产生合理的精度。四面体单元和其他类型的单元的网格加密策略将基于申请人提出的单元形状的精确先验特征来评估:通用的最大特征值准则和对于一阶四面体单元的最小奇异值条件。本项目将涉及两名研究生。对这些学生来说,一个明显的好处是他们接触到了现代计算方法、电磁场分析和各种实际应用。几家公司已经对申请者的研究表示了浓厚的兴趣。该项目很有可能与磁记录行业、石油勘探服务和有限元软件公司开展产业合作。人们认为,该项目的结果将具有理论和实践意义:它们将促进地球物理中磁记录介质和磁头、电偶和感应测井的快速三维场分析,并将对无损检测、优化和其他领域具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Tsukerman其他文献
A "Trefftz Machine" for Absorbing Boundary Conditions
用于吸收边界条件的“Trefftz 机器”
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Igor Tsukerman - 通讯作者:
Igor Tsukerman
Discontinuous Galerkin methods with Trefftz approximations
具有 Trefftz 近似的不连续 Galerkin 方法
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.4
- 作者:
F. Kretzschmar;S. Schnepp;Igor Tsukerman;T. Weiland - 通讯作者:
T. Weiland
A new computational method for plasmon resonances of nanoparticles and for wave propagation
- DOI:
10.1109/wcacem.2005.1469731 - 发表时间:
2005-04 - 期刊:
- 影响因子:0
- 作者:
Igor Tsukerman - 通讯作者:
Igor Tsukerman
The Power of Trefftz Approximations: Finite Difference, Boundary Difference and Discontinuous Galerkin Methods; Nonreflecting Conditions and Non-Asymptotic Homogenization
Trefftz 近似的威力:有限差分、边界差分和不连续伽辽金方法;
- DOI:
10.1007/978-3-319-20239-6_5 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
F. Kretzschmar;S. Schnepp;H. Egger;F. Ahmadi;Nabil Nowak;Vadim A. Markel;Igor Tsukerman - 通讯作者:
Igor Tsukerman
Transparent boundary conditions for a discontinuous Galerkin Trefftz method
不连续 Galerkin Trefftz 方法的透明边界条件
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4
- 作者:
H. Egger;F. Kretzschmar;S. Schnepp;Igor Tsukerman;T. Weiland - 通讯作者:
T. Weiland
Igor Tsukerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Tsukerman', 18)}}的其他基金
From Non-Asymptotic to Nonlocal Homogenization of Electromagnetic Metamaterials
电磁超材料从非渐近到非局域均匀化
- 批准号:
1620112 - 财政年份:2016
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
Collaborative Research: A Computational Framework for Non-asymptotic Homogenization with Applications to Metamaterials
协作研究:非渐近均质化的计算框架及其在超材料中的应用
- 批准号:
1216927 - 财政年份:2012
- 资助金额:
$ 12.28万 - 项目类别:
Continuing Grant
Efficient Numerical and Analytical Finite Element Analysis in Electromagnetics
电磁学中的高效数值和解析有限元分析
- 批准号:
9702364 - 财政年份:1997
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208402 - 财政年份:2022
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208426 - 财政年份:2022
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2022-04190 - 财政年份:2022
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Finite-Time Adaptive Control of Nonlinear Systems and Its Applications
非线性系统的有限时间自适应控制及其应用
- 批准号:
RGPIN-2017-05367 - 财政年份:2022
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Finite-Time Adaptive Control of Nonlinear Systems and Its Applications
非线性系统的有限时间自适应控制及其应用
- 批准号:
RGPIN-2017-05367 - 财政年份:2021
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2021
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2020
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Finite-Time Adaptive Control of Nonlinear Systems and Its Applications
非线性系统的有限时间自适应控制及其应用
- 批准号:
RGPIN-2017-05367 - 财政年份:2020
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Finite Element Methods for Flows in Porous Media
多孔介质流动的自适应有限元方法
- 批准号:
2281583 - 财政年份:2019
- 资助金额:
$ 12.28万 - 项目类别:
Studentship
EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.
EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。
- 批准号:
1917144 - 财政年份:2019
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant