CAREER: Molecular Interfacial Engineering for Advanced Applications

职业:高级应用的分子界面工程

基本信息

  • 批准号:
    9703207
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-06-01 至 2002-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT CTS-9703207 This Career project is an investigation of a variety of material issues associated with the use of high resolution lithographic processes (electron beam writing, extreme UV lithography, and X-ray lithography) to fabricate structures with lateral dimensions less than 100nm. One issues is the determination of the physical properties of thin films of polymers (photoresist), and the diffusion behavior of solvents and other low molecular weight agents in these films in order to develop a more fundamental understanding of current photoresist processing and its limitations_ Another is the development of new polymers for use in extreme UV and x-ray lithography. Some of the work targets new strategies for micro- and nanofabrication that will involve, for example, the use of patterned self-assembled monolayers and/or multiple layer resist systems. A new manufacturing process will be investigated for the efficient integration of dissimilar materials. The process relies on two levels of self-assembly. At the molecular scale, functionalized self-assembled monolayers (SAMS) control wetting and adhesion interactions of surfaces, At the scale of chips, modules, or panels, fluidic self-assembly (enhanced by predetermined interactions between surfaces covered with SAMS) delivers structures of micron dimensions of one material (Si, for example) to as many as 10 million receptor sites on a substrate of another material (plastic, for example). Fundamental studies of the interactions and frictional properties of surfaces modified with SAMs will be made using a modified atomic force microscope (AFM) in which 20 (m glass spheres are attached to the AFM tip. These mesoscale studies will guide the macroscopic process development and will make significant contributions to the field of tribology. The use of non-Fickian diffusion of plasticizers in limited supply will be investigated as a strategy to control the morphology and materials properties of glassy polymers, specifically for opt ical applications. The investigators will fabricate and test the cross-sectional area of transmission is defined by refractive index gradients that correspond to gradients in plasticizer concentration. They will also films fabricate flat diffraction gratings and flat lenses in glassy polymer films using patterned SAMS, preferential wetting, and non-Fickian diffusion. In addition to the optical applications, the proposed research will make significant contributions to our knowledge of non-Fickian diffusion mechanisms in glassy polymers. Through a State Grant of $340,000, the polymer laboratory in the Department of Chemical Engineering at the University of Wisconsin has recently been renovated with state-of-the-art equipment A unique opportunity exists to develop a polymer laboratory course that emphasizes polymer synthesis and characterization. The lab will be taught to seniors and first year graduate students in two formats: 1) weekly labs and lab reports, and 2) semester long group projects that are consistent with the teaching methodology of problem based learning. This laboratory course will compliment a lecture course in polymer science and technology. At the graduate level, a new course in the physical chemistry of polymers will be introduced. These curriculum improvements are synergistic with our educational and research initiatives to offer research activities at the undergraduate level, to prepare and mentor graduate students to perform innovative research in the field of polymers, and to unite the polymer community on campus. The investigator will also develop a short course to be offered during the summer primarily for scientists
CTS-9703207这个职业项目是对使用高分辨率光刻工艺(电子束写入、极紫外光刻和X射线光刻)制造横向尺寸小于100 nm的结构所涉及的各种材料问题的调查。一个问题是聚合物(光致抗蚀剂)薄膜的物理性质的测定,以及溶剂和其他低分子试剂在这些薄膜中的扩散行为,以便对当前的光致抗蚀剂工艺及其局限性有更基本的了解。另一个问题是用于极端紫外线和X射线光刻的新型聚合物的开发。一些工作的目标是微米和纳米制造的新策略,例如,将涉及使用图案化的自组装单分子层和/或多层抗蚀剂系统。将研究一种新的制造工艺,以实现不同材料的有效集成。这一过程依赖于两个层次的自我组装。在分子尺度上,功能化自组装单分子层(SAMS)控制表面的润湿和黏附相互作用,在芯片、模块或面板的尺度上,流体自组装(通过覆盖有SAMS的表面之间的预定相互作用增强)将一种材料(例如,硅)的微米级结构传递到另一种材料(例如,塑料)基质上的多达1000万个受体位置。利用改进型原子力显微镜(AFM)对SAM表面的相互作用和摩擦性能进行基础性研究,在AFM尖端附着20微米玻璃球。这些细观尺度的研究将指导宏观过程的发展,并将对摩擦学领域做出重大贡献。在有限的供应中使用非费克扩散的增塑剂将被研究作为一种控制玻璃态聚合物的形态和材料性能的策略,特别是在光学应用中。研究人员将制作并测试由折射率梯度定义的透射率横截面面积,该梯度对应于增塑剂浓度的梯度。他们还将使用图案化SAMS、优先润湿和非费克扩散在玻璃聚合物薄膜中制造平板衍射栅和平板透镜。除了在光学方面的应用外,这项研究还将对我们了解玻璃态聚合物中的非费克扩散机制做出重大贡献。通过34万美元的国家拨款,威斯康星大学化工系的聚合物实验室最近进行了翻新,配备了最先进的设备。这是一个独特的机会,可以开发一门侧重聚合物合成和表征的聚合物实验室课程。本实验将以两种形式教授高年级学生和一年级研究生:1)每周的实验和实验报告,以及2)与基于问题的学习的教学方法相一致的长达一学期的小组项目。本实验课程是对聚合物科学与技术讲座课程的补充。在研究生阶段,将引入一门新的聚合物物理化学课程。这些课程的改进与我们的教育和研究活动相结合,这些活动提供本科生水平的研究活动,准备和指导研究生在聚合物领域进行创新研究,并在校园内团结聚合物社区。研究人员还将开发一个短期课程,主要在夏季为科学家提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Nealey其他文献

Basic Research Needs for Transformative Manufacturing
转型制造的基础研究需求
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cynthia Jenks;Nyung Lee;Jennifer Lewis;C. Kagan;Paul Nealey;P. Braun;Johnathan E. Holladay;Yanqing Gao;D. Sholl;B. Helms;J. Sutherland;J. Greer;C. Spadaccini;E. Holm;A. Rollett;C. Tway
  • 通讯作者:
    C. Tway

Paul Nealey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Nealey', 18)}}的其他基金

FuSe: Precise Sequence Specific Block Copolymers for Directed Self-Assembly - Co-Design of Lithographic Materials for Pattern Quality, Scaling, and Manufacturing
FuSe:用于定向自组装的精确序列特定嵌段共聚物 - 用于图案质量、缩放和制造的光刻材料的协同设计
  • 批准号:
    2329133
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
SNM: Scaling Directed Self-Assembly of Block Copolymers for Sub 10 nm Manufacturing
SNM:用于亚 10 nm 制造的嵌段共聚物的缩放定向自组装
  • 批准号:
    1344891
  • 财政年份:
    2013
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
NSEC: Templated Synthesis and Assembly at the Nanoscale
NSEC:纳米尺度的模板化合成和组装
  • 批准号:
    0425880
  • 财政年份:
    2004
  • 资助金额:
    $ 26万
  • 项目类别:
    Cooperative Agreement
NIRT: Dimension Dependent Material Properties of Nanoscopic Macromolecular Structures
NIRT:纳米大分子结构的尺寸依赖性材料特性
  • 批准号:
    0210588
  • 财政年份:
    2002
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Small Grants for Exploratory Research: Nanofabrication Techniques Based on Two Levels of Molecular Self-Assembly Self-Assembled Monolayers & Ordering of Block Copolymers
探索性研究小额资助:基于两级分子自组装自组装单层的纳米制造技术
  • 批准号:
    9708944
  • 财政年份:
    1997
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Atomic-level Imaging and Molecular Beam Scattering Studies of Interfacial Chemical Dynamics
界面化学动力学的原子级成像和分子束散射研究
  • 批准号:
    2313365
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
  • 批准号:
    2208260
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Tuning Peripheral Functionality of Molecular and Interfacial Electrocatalysts to Influence Reaction Pathways
调整分子和界面电催化剂的外围功能以影响反应途径
  • 批准号:
    RGPIN-2021-03691
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Graphene Exfoliation in Polymer Nanocomposites Using Environment-friendly Supercritical Fluids: The Role of Interfacial Tension and Polymer Molecular Structure
使用环保超临界流体在聚合物纳米复合材料中石墨烯剥离:界面张力和聚合物分子结构的作用
  • 批准号:
    568387-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Postdoctoral Fellowships
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
  • 批准号:
    2208238
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Interfacial Electrochemistry and Electrocatalysis: Understanding and Directing Electrochemical Processes at the Molecular Level
界面电化学和电催化:在分子水平上理解和指导电化学过程
  • 批准号:
    RGPIN-2022-04316
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Tuning Peripheral Functionality of Molecular and Interfacial Electrocatalysts to Influence Reaction Pathways
调整分子和界面电催化剂的外围功能以影响反应途径
  • 批准号:
    DGECR-2021-00427
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Launch Supplement
Tuning Peripheral Functionality of Molecular and Interfacial Electrocatalysts to Influence Reaction Pathways
调整分子和界面电催化剂的外围功能以影响反应途径
  • 批准号:
    RGPIN-2021-03691
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Interfacial Electrochemistry and Electrocatalysis: Understanding and Directing Electrochemical Phenomena at the Molecular Level
界面电化学和电催化:在分子水平上理解和指导电化学现象
  • 批准号:
    RGPIN-2017-05610
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了