CAREER: Nonlinearity and Uncertainty in Control System Design
职业:控制系统设计中的非线性和不确定性
基本信息
- 批准号:9703294
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2001-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ECS-9703294 Freeman A basic purpose of feedback is to reduce the effect of uncertainty on the behavior of a system. When applied inappropriately, however, feedback can also increase the risk of instability and other undesirable phenomena. An obstacle to the successful design of feedback controllers has long been the presence of nonlinearity in models and in real systems. The goal of this project is to develop innovative methods for designing feedback controllers for uncertain nonlinear systems and to educate future engineers and researchers in their application. This project will build the foundation of an integrated program of research and education in nonlinear and robust control theory in the Robert R. McCormick School of Engineering and Applied Science at Northwestern University. The educational goals of this project are to revise existing undergraduate and graduate courses in systems and control and to develop new graduate courses on nonlinear control system analysis and design. Selected topics from the proposed research activities will be integrated into these courses. These activities will contribute substantially to the educational objectives of the Council on Dynamic Systems and Control, a new interdisciplinary program at Northwestern with participating faculty and students from five engineering departments. The research goals of this project are to further develop the nonlinear control design techniques pioneered by the PI and co-workers and to deepen the current understanding of fundamental issues in nonlinear control theory. During the course of this project, the PI will identify those flexibility's in new and existing nonlinear design methods which can be exploited to obtain good controllers for practical applications. For example, one task is to create new tools for incorporating nonlinear control constraints ubiquitous in real systems into the control design procedure, a departure from the traditional approach of ignoring such constraints during the design. Another task is to analyze the effects of measurement error on the behavior of nonlinear feedback loops and to develop design techniques for reducing such effects. In collaboration with Rockwell Science Center in Thousand Oaks, California, the new nonlinear design methods will be applied to problems in automotive control, aircraft control, and industrial automation control. This project will result in a significant contribution to the growing discipline of nonlinear control theory, particularly in the area of robust nonlinear control. Design guidelines developed during the course of this project will be invaluable to the control engineer who is trying to apply the state-of-the-art methods to real control problems. Furthermore, this project will make a substantial impact on the interdisciplinary graduate program in systems and control at Northwestern. Not only will students who take the proposed design courses be exposed to the latest breakthroughs in the field of nonlinear control, they will also develop an appreciation and basic understanding of the effects of nonlinearity in feedback loops created by nature or designed by engineers.
ECS-9703294 Freeman 反馈的基本目的是减少不确定性对系统行为的影响。 然而,如果应用不当,反馈也会增加不稳定和其他不良现象的风险。 长期以来,反馈控制器成功设计的一个障碍是模型和真实的系统中存在的非线性。 该项目的目标是为不确定非线性系统开发设计反馈控制器的创新方法,并在其应用中教育未来的工程师和研究人员。 该项目将为罗伯特·R·R·大学非线性和鲁棒控制理论研究和教育综合项目奠定基础。西北大学麦考密克工程与应用科学学院。 这个项目的教育目标是修订现有的本科生和研究生课程的系统和控制和开发新的研究生课程的非线性控制系统分析和设计。 从拟议的研究活动中选定的专题将纳入这些课程。 这些活动将大大有助于理事会的动态系统和控制,在西北与参与教师和学生从五个工程部门的一个新的跨学科计划的教育目标。 该项目的研究目标是进一步发展PI及其同事开创的非线性控制设计技术,并加深对非线性控制理论基本问题的理解。 在这个项目的过程中,PI将确定新的和现有的非线性设计方法,可以利用这些方法来获得良好的控制器,用于实际应用中的灵活性。 例如,一个任务是创建新的工具,用于将真实的系统中普遍存在的非线性控制约束结合到控制设计过程中,这与在设计期间忽略此类约束的传统方法不同。 另一项任务是分析测量误差对非线性反馈回路行为的影响,并开发减少这种影响的设计技术。 与位于加州千橡市的罗克韦尔科学中心合作,新的非线性设计方法将应用于汽车控制、飞机控制和工业自动化控制中的问题。 该项目将对非线性控制理论的发展做出重大贡献,特别是在鲁棒非线性控制领域。 在这个项目的过程中开发的设计指南将是无价的控制工程师谁是试图应用国家的最先进的方法,以真实的控制问题。 此外,该项目将对西北大学系统与控制的跨学科研究生课程产生重大影响。 参加拟议设计课程的学生不仅将接触到非线性控制领域的最新突破,他们还将对自然界或工程师设计的反馈回路中的非线性效应有一个基本的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randy Freeman其他文献
Randy Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randy Freeman', 18)}}的其他基金
Decentralized nonlinear estimation and control of multi-agent systems
多智能体系统的分散非线性估计与控制
- 批准号:
0601661 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A Behavioral Approach to Dissipativity Analysis in Nonlinear Systems, with Applications to Human/Robot Interfaces
非线性系统耗散分析的行为方法及其在人/机器人界面中的应用
- 批准号:
0115317 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Overcoming nonlinearity in short-reach optical communication
克服短距离光通信中的非线性
- 批准号:
DP230101493 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Multi-core fiber sensing using geometrical phase nonlinearity of optical polarization
利用光学偏振的几何相位非线性进行多芯光纤传感
- 批准号:
23K04616 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinearity in Reaction-Diffusion and Kinetic Equations
反应扩散和动力学方程中的非线性
- 批准号:
2204615 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Study of Lamb wave frequency mixing by interfacial nonlinearity toward nondestructive evaluation of closed defects
界面非线性兰姆波混频研究对闭合缺陷的无损评价
- 批准号:
22H01361 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Time variation, nonlinearity and heterogeneity mechanics of tissues: application to the respiratory system
组织的时间变化、非线性和异质性力学:在呼吸系统中的应用
- 批准号:
RGPIN-2017-06929 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Co-nonlinearity Analysis Methods Leading to Novel Knowledge Awareness
共非线性分析方法的开发和应用导致新知识意识
- 批准号:
21K12018 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF-BSF: Nonlinearity, Randomness, and Dynamics: Vistas into the Extreme Mechanics of Non-Euclidean Sheets
NSF-BSF:非线性、随机性和动力学:非欧几里得片的极端力学展望
- 批准号:
2108124 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
- 批准号:
21H00993 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Movable-Nonlinearity Modeling for Successive Analyses of Very Flexible Structures
用于连续分析非常灵活的结构的可动非线性建模
- 批准号:
21K14341 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists