Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
基本信息
- 批准号:2329399
- 负责人:
- 金额:$ 3.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the National Science Foundation (NSF) and the Conference Board of the Mathematical Sciences (CBMS) conference "Inverse Problems and Nonlinearity", which is to be held June 3--7, 2024 at Clemson University in Clemson, South Carolina. The conference will feature ten hour-long main lectures delivered by the Principal Lecturer Professor Gunther Uhlmann, who is a leading expert in the field of inverse problems for partial differential equations (PDEs). In addition to the main lectures, two supplementary lectures will be given by Dr. Ru-Yu Lai and Dr. Yiran Wang, who are both early career active researchers working in the subject areas covered in the main lectures. These lectures along with other activities will give plenty opportunities for the conference participants, especially those young researchers and students from underrepresented groups, to learn and discuss the fundamental ideas and the most recent development of inverse problems for nonlinear PDEs. The regional emphasis of this conference will also strengthen the research collaborations among researchers working in inverse problems and related fields in the southeast, as well as establish new research programs. Inverse problems, which are interdisciplinary in nature, occur in the mathematical modeling of real-world applications where direct observations of certain properties are not possible. While there have been many important work on inverse problems over the past few decades, most of them have focused on linear PDEs or PDE systems. Contrary to the common belief that the presence of nonlinearity is an obstacle, a recent major breakthrough has shown that nonlinearity can actually be used as a tool to solve inverse problems. The series of lectures given in this conference will show in detail how nonlinearity may help for a variety of inverse problems arising in nonlinear wave propagation, nonlinear analogs of Calderon's inverse problems, nonlinear transport equations, and inverse scattering for nonlinear PDEs. In particular, the role of higher order linearization as a key technique to deal with the nonlinearity, will be emphasized. Several open problems will be formulated by the principal Lecturer and actively discussed by the lecturers and participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持美国国家科学基金会(NSF)和数学科学会议委员会(CBMS)会议“逆问题和非线性”,这是将于2024年6月3日至7日在克莱姆森大学在南卡罗来纳州克莱姆森举行。会议将有10个小时的主要讲座,由首席讲师Gunther Uhlmann教授主讲,他是偏微分方程(PDE)反问题领域的领先专家。除了主要讲座外,两个补充讲座将由Ru-Yu Lai博士和Yiran Wang博士提供,他们都是在主要讲座所涵盖的主题领域工作的早期职业积极研究人员。这些讲座沿着其他活动将为与会者,特别是那些年轻的研究人员和学生代表性不足的群体,提供大量的机会,学习和讨论的基本思想和最新发展的非线性偏微分方程反问题。本次会议的区域重点也将加强研究人员在反问题和相关领域在东南部工作的研究合作,以及建立新的研究计划。反问题,这是跨学科的性质,发生在现实世界的应用程序的数学建模,其中某些属性的直接观察是不可能的。虽然在过去的几十年里有许多重要的反问题的工作,他们中的大多数都集中在线性偏微分方程或偏微分方程系统。与普遍认为非线性的存在是一个障碍相反,最近的一项重大突破表明,非线性实际上可以用作解决逆问题的工具。在这次会议上给出的一系列讲座将详细展示如何非线性可能有助于各种反问题所产生的非线性波传播,卡尔德龙的反问题,非线性输运方程的非线性模拟,以及非线性偏微分方程的逆散射。特别是,高阶线性化的作用作为一个关键技术来处理非线性,将被强调。几个开放的问题将由首席讲师制定,并由讲师和参与者积极讨论。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shitao Liu其他文献
Inverse problem for structural acoustic interaction
结构声相互作用的反问题
- DOI:
10.1016/j.na.2010.12.020 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Shitao Liu - 通讯作者:
Shitao Liu
Recovering density for the Mindlin–Timoshenko system by means of a single boundary measurement
通过单一边界测量恢复 Mindlin-Timoshenko 系统的密度
- DOI:
10.1080/00036811.2021.1994956 - 发表时间:
2021 - 期刊:
- 影响因子:1.1
- 作者:
J. Kurz;Shitao Liu;P. Pei - 通讯作者:
P. Pei
Performance characteristics of four new high resolution L(Y)so detectorblocks for human PET
用于人体 PET 的四种新型高分辨率 L(Y)so 探测器块的性能特征
- DOI:
10.1109/nssmic.2007.4436840 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
R. Ramirez;Shitao Liu;Yuxuan Zhang;Hongdi Li;H. Baghaei;Jiguo Liu;Soonseok Kim;Yu Wang;W. Wong - 通讯作者:
W. Wong
Hybrid genetic algorithm for parametric optimization of surface pipeline networks in underground natural gas storage harmonized injection and production conditions
地下储气库注采协调条件下地面管网参数优化的混合遗传算法
- DOI:
10.1016/j.ngib.2025.03.009 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:6.500
- 作者:
Jun Zhou;Zichen Li;Shitao Liu;Chengyu Li;Yunxiang Zhao;Zonghang Zhou;Guangchuan Liang - 通讯作者:
Guangchuan Liang
A High-Resolution Time-of-Flight Clinical PET Detection System Using a Gapless PMT-Quadrant-Sharing Method
采用无间隙 PMT 象限共享方法的高分辨率飞行时间临床 PET 检测系统
- DOI:
10.1109/tns.2015.2455511 - 发表时间:
2015 - 期刊:
- 影响因子:1.8
- 作者:
W. Wong;Hongdi Li;Yuxuan Zhang;R. Ramirez;S. An;Chao Wang;Shitao Liu;Yun Dong;H. Baghaei - 通讯作者:
H. Baghaei
Shitao Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
预冲击降低SWL导致的肾小管上皮细胞膜PS残基外翻及CBMs表达上调
- 批准号:81000293
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: CBMS Conference: Algorithmic Fractal Dimensions
会议:CBMS 会议:分形维数算法
- 批准号:
2329555 - 财政年份:2024
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
CBMS Conference: Deep Learning and Numerical Partial Differential Equations
CBMS 会议:深度学习和数值偏微分方程
- 批准号:
2228010 - 财政年份:2023
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
CBMS Conference: Foundations of Causal Graphical Models and Structure Discovery
CBMS 会议:因果图模型和结构发现的基础
- 批准号:
2227849 - 财政年份:2023
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
Carbohydrate Binding Modules CBMs New molecular probes and detergent technology proteins
碳水化合物结合模块 CBM 新型分子探针和洗涤剂技术蛋白质
- 批准号:
BB/X511286/1 - 财政年份:2022
- 资助金额:
$ 3.96万 - 项目类别:
Training Grant
CBMS Conference on Topological Data Analysis and Persistence Theory
CBMS拓扑数据分析与持久性理论会议
- 批准号:
2132497 - 财政年份:2021
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
CBMS Conference: Interface of Mathematical Biology and Linear Algebra
CBMS会议:数学生物学与线性代数的接口
- 批准号:
2132585 - 财政年份:2021
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
CBMS Conference: Ramanujan's Partition Congruences, Mock Theta Functions, and Beyond
CBMS 会议:拉马努金的划分同余、模拟 Theta 函数及其他
- 批准号:
2132649 - 财政年份:2021
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
- 批准号:
1933548 - 财政年份:2020
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
CBMS Conference: K-theory of Operator Algebras and Its Applications to Geometry and Topology
CBMS 会议:算子代数的 K 理论及其在几何和拓扑中的应用
- 批准号:
1933327 - 财政年份:2020
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant
CBMS Conference: Parallel Time Integration
CBMS 会议:并行时间积分
- 批准号:
1933342 - 财政年份:2020
- 资助金额:
$ 3.96万 - 项目类别:
Standard Grant