Degenerate Stochastic Systems and Related Problems in Analysis

简并随机系统及相关分析问题

基本信息

项目摘要

9703596 Mohammed The investigator will continue his collaborative work with Denis Bell on the study of degenerate stochastic differential equations and related problems in linear and quasilinear second-order partial differential equations. The proposed research falls into three parts. Part I deals with degenerate diffusions and their impact on linear partial differential equations. In their recent work, the investigators have proved a very general Hormander-type hypoellipticity theorem for second-order linear partial differential operators. The hypotheses of this theorem allow Hormander's general Lie algebra condition to fail at an optimal exponential rate on smooth hypersurfaces in Euclidean space. Such operators have been termed superdegenerate. The investigators will establish the existence of smooth solutions to the Dirichlet and Neumann problems associated with superdegenerate operators. In Part II, the investigators will study the existence of smooth densities for a wide class of degenerate stochastic hereditary equations. They will seek to use their methods to establish hypoellipticity of the corresponding operators. In addition to solving an infinite-dimensional hypoellipticity problem (apparently the first of its kind), the estimates obtained here should lead to the existence of a Lyapunov spectrum in probability for singular hereditary systems. In Part III, they will use their methods to study quasilinear second-order partial differential operators with superdegenerate principal parts. These operators are closely related to superdiffusions. The objective of this part of the research is to seek classical smooth positive solutions of the quasilinear Cauchy, Dirichlet, and Neumann problems associated with such operators. This research deals with two important problem areas that arise in physics and engineering. The first area concerns an important class of mathematical models, called partial differential equations, that are fundamental obje cts in modern day pure and applied mathematics. These equations arose from the study of heat conduction, electrical potential, and fluid flow. Partial differential equations have important connections with several areas of mathematics, in particular probability theory and geometry. The second area is devoted to a class of models that are used in physics, engineering and biology in order to analyze dynamical systems whose evolution is influenced by random fluctuations and past history. These models are very important in a variety of diverse areas ranging from signal processing, stock market fluctuations, economic and labor models, aircraft dynamics, materials with memory, and population dynamics. The investigators will use the most current probabilistic techniques in order to develop a deeper understanding of these models.
小行星9703596 研究者将继续与Denis Bell合作开展研究 退化随机微分方程及其相关问题的线性和 拟线性二阶偏微分方程拟议的研究福尔斯属于 三个部分。第一部分讨论退化扩散及其对线性偏微分方程的影响。 微分方程在他们最近的工作中,调查人员已经证明了一个非常普遍的 二阶线性偏微分的Hormander型亚椭圆性定理 运营商这个定理的假设允许Hormander的一般李代数 欧氏空间中光滑超曲面以最优指数速率失效的条件 空间这样的算子被称为超简并算子。调查人员将确定 光滑解的存在性Dirichlet和Neumann问题与 超退化算子在第二部分中,研究者将研究光滑 密度的一类广泛的退化随机遗传方程。他们将寻求 使用他们的方法来建立相应算子的亚椭圆性。此外 解决无限维亚椭圆问题(显然是第一个), 这里得到的估计应该导致存在一个李雅普诺夫谱, 奇异遗传系统的概率在第三部分,他们将使用他们的方法来研究 具有超退化主部的拟线性二阶偏微分算子 这些算子与超扩散密切相关。本部分的目的是 研究拟线性Cauchy,Dirichlet, 以及与这些算子相关的Neumann问题。 这项研究涉及物理学中出现的两个重要问题领域, 工程.第一个领域涉及一类重要的数学模型,称为 偏微分方程,这是基本的目标,在现代纯粹和应用 数学这些方程源于对热传导、电 潜力和流体流动。偏微分方程与 数学的几个领域,特别是概率论和几何。第二 该领域致力于一类模型,用于物理学,工程学和生物学, 为了分析其演化受随机波动影响的动力系统, 和过去的历史。这些模型在各种不同的领域都非常重要, 从信号处理,股市波动,经济和劳动力模型,飞机 动力学、记忆材料和种群动力学。调查人员将使用 最新的概率技术,以便更深入地了解这些 模型

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Salah-Eldin Mohammed其他文献

Salah-Eldin Mohammed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Salah-Eldin Mohammed', 18)}}的其他基金

Stochastic Dynamical Systems in Finite and Infinite-Dimensions
有限和无限维随机动力系统
  • 批准号:
    0705970
  • 财政年份:
    2007
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Continuing Grant
Finite and Infinite-Dimensional Stochastic Dynamical Systems
有限和无限维随机动力系统
  • 批准号:
    0203368
  • 财政年份:
    2002
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Continuing Grant
Aspects of Stochastic Differential Geometry in Function Space
函数空间中的随机微分几何方面
  • 批准号:
    9980209
  • 财政年份:
    2000
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Degenerate Stochastic Differential Equations and Partial Differential Equations
数学科学:简并随机微分方程和偏微分方程
  • 批准号:
    9503702
  • 财政年份:
    1995
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stochastic Hereditary Systems
数学科学:随机遗传系统
  • 批准号:
    9206785
  • 财政年份:
    1992
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Lyapunov Exponents and Stable Manifolds for Stochastic Delay Systems
数学科学:随机时滞系统的李雅普诺夫指数和稳定流形
  • 批准号:
    8907857
  • 财政年份:
    1989
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Research Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Standard Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
  • 批准号:
    2348164
  • 财政年份:
    2024
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Continuing Grant
CAREER: Identifying emergent dynamics in stochastic systems
职业:识别随机系统中的新兴动态
  • 批准号:
    2238667
  • 财政年份:
    2023
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Continuing Grant
Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
  • 批准号:
    2246838
  • 财政年份:
    2023
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Spatial Systems
职业:随机空间系统
  • 批准号:
    2238272
  • 财政年份:
    2023
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Continuing Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Standard Grant
Learning Complex Stochastic Systems
学习复杂的随机系统
  • 批准号:
    2246815
  • 财政年份:
    2023
  • 资助金额:
    $ 9.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了