Aspects of Stochastic Differential Geometry in Function Space

函数空间中的随机微分几何方面

基本信息

项目摘要

This career advancement award is to enable the PI to study stochastic differential systems with memory, stochastic partial differential equations under geometric constraints, and their numerical aspects. Such models arise in engineering and physical applications. The award has several objectives:The first objective is to offer the PI the opportunity to acquire new expertise in differential geometry and numerical analysis. This activity will take the form of a study of the current literature on (stochastic) differential geometry, stochastic partial differential equations and stochastic numerics. The PI will consult with leading experts in these rapidly-developing areas. The second objective is to introduce new techniques from differential geometry and numerics in order to develop a theory of stochastic systems with memory and geometric constraints. In addition to its great relevance to physical applications, it is expected that the study of infinite-dimensional stochastic systems with constraints would lead to very interesting connections with current and fast-growing research in stochastic differential geometry. The third objective is introduce a dynamical and differential geometric component into the existing and fast-growing theory of stochastic partial differential equations. The PI will study the ergodic theory of stochastic flows generated by such systems. The fourth objective is to develop efficient algorithms for the numerical simulation of stochastic models with memory that arise in mechanical, control and electrical engineering, finance and economics, e.g. the option-pricing of financial securities whose evolution is governed by their past history.The fifth objective is to compile the results of the investigations into a graduate course targeting students majoring in mathematics, engineering and/or finance.
这个职业发展奖是为了使PI能够研究具有记忆的随机微分系统,几何约束下的随机偏微分方程及其数值方面。这种模型出现在工程和物理应用中。该奖项有几个目标:第一个目标是为PI提供获得微分几何和数值分析新专业知识的机会。这项活动将采取的形式是研究目前的文献(随机)微分几何,随机偏微分方程和随机数值。PI将咨询这些快速发展领域的领先专家。 第二个目标是引进新的技术,从微分几何和数值,以发展理论的随机系统的记忆和几何约束。除了与物理应用的密切相关性之外,人们还期望对具有约束的无限维随机系统的研究将导致与当前和快速增长的随机微分几何研究的非常有趣的联系。第三个目标是将动力学和微分几何引入到现有的和快速发展的随机偏微分方程理论中。PI将研究由这种系统产生的随机流的遍历理论。 第四个目标是为机械、控制和电气工程、金融和经济中出现的具有记忆的随机模型的数值模拟开发有效的算法,例如金融证券的期权定价,其演变受其过去历史的支配。第五个目标是将调查结果汇编成针对数学专业学生的研究生课程,工程和/或金融。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Salah-Eldin Mohammed其他文献

Salah-Eldin Mohammed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Salah-Eldin Mohammed', 18)}}的其他基金

Stochastic Dynamical Systems in Finite and Infinite-Dimensions
有限和无限维随机动力系统
  • 批准号:
    0705970
  • 财政年份:
    2007
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Finite and Infinite-Dimensional Stochastic Dynamical Systems
有限和无限维随机动力系统
  • 批准号:
    0203368
  • 财政年份:
    2002
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Degenerate Stochastic Systems and Related Problems in Analysis
简并随机系统及相关分析问题
  • 批准号:
    9703596
  • 财政年份:
    1997
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Degenerate Stochastic Differential Equations and Partial Differential Equations
数学科学:简并随机微分方程和偏微分方程
  • 批准号:
    9503702
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stochastic Hereditary Systems
数学科学:随机遗传系统
  • 批准号:
    9206785
  • 财政年份:
    1992
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Lyapunov Exponents and Stable Manifolds for Stochastic Delay Systems
数学科学:随机时滞系统的李雅普诺夫指数和稳定流形
  • 批准号:
    8907857
  • 财政年份:
    1989
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Studies of the Stochastic Partial Differential Equations
随机偏微分方程的研究
  • 批准号:
    2246850
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
  • 批准号:
    2872613
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Studentship
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
  • 批准号:
    2245242
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
McKean Vlasov Stochastic Partial Differential Equations
McKean Vlasov 随机偏微分方程
  • 批准号:
    EP/W034220/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
  • 批准号:
    2884422
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Studentship
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Numerical methods for stochastic differential equations
随机微分方程的数值方法
  • 批准号:
    RGPIN-2018-04449
  • 财政年份:
    2022
  • 资助金额:
    $ 6万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating stochastic programming, differential equations with deep learning methods for optimizing non-medical intervention policies
将随机规划、微分方程与深度学习方法相结合,优化非医疗干预政策
  • 批准号:
    RGPIN-2022-04519
  • 财政年份:
    2022
  • 资助金额:
    $ 6万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2022
  • 资助金额:
    $ 6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了