Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
基本信息
- 批准号:2345533
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Particles in confined systems such as the atoms or molecules of a gas in a container interact either through repulsion or attraction, with interactions increasing in strength as particles become close together. In principle, the equations of classical and quantum physics allow complete determination of the behavior of each particle in the system for arbitrary periods of time. In practice, the number of particles, and therefore the complexity of the system, ranges beyond the capabilities of the best computing resources. This project aims to achieve a substantial reduction in computational complexity through a statistical point of view, focused on the probability of finding at a given time a particle in the system at a certain position in space and moving with a certain velocity. The results are expected to be directly applicable to the modeling of states of matter such as Bose-Einstein condensates or plasmas, and of systems with particle-like behavior, as vortices in fluids or superconductors. The project will provide mentoring and training opportunities for a new generation of researchers at the intersection of mathematics and physics. The first part of the project concerns the mean-field limit of systems of particles with inverse power potentials, for instance of Coulomb or Riesz type. The investigator aims to determine the minimal regularity assumptions on the limiting equation needed for quantitative convergence, whether convergence is valid in the more realistic setting of noise in the dynamics, the optimal time scales for the mean-field approximation to hold, and the sharp rate of convergence. The second part deals with the supercritical mean-field scaling regime, a singular limit of Newton’s second law or the semiclassical Schrödinger equation leading to a kinetic generalization of Euler’s equation for an ideal fluid. The goal is to identify the optimal range for the validity of this limit through analytical and numerical means by building on progress for the monokinetic case where the limiting equation reduces to the incompressible Euler equation and drawing on a connection to the quasineutral limit in plasma physics. An important quantity for measuring convergence is a modulated energy-entropy or free energy, which is related to renormalized energies appearing in the statistical mechanics of Coulomb and Riesz gasses. Studying these quantities and their variations along transport fields leads to functional inequalities of commutator type, establishing new connections to harmonic analysis of independent interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
封闭系统中的粒子,如容器中气体的原子或分子,通过排斥或吸引相互作用,随着粒子靠近,相互作用的强度增加。原则上,经典和量子物理学的方程允许完全确定系统中每个粒子在任意时间段内的行为。在实践中,粒子的数量以及系统的复杂性超出了最佳计算资源的能力。该项目旨在通过统计学的观点大幅降低计算复杂性,重点是在给定时间在空间的某个位置发现系统中粒子并以一定速度移动的概率。这些结果有望直接应用于玻色-爱因斯坦凝聚体或等离子体等物质状态的建模,以及具有类似粒子行为的系统,如流体或超导体中的涡旋。该项目将为数学和物理交叉领域的新一代研究人员提供指导和培训机会。该项目的第一部分涉及粒子系统的平均场极限与反幂势,例如库仑或Riesz型。研究人员的目标是确定定量收敛所需的极限方程的最小正则性假设、收敛在动力学中更现实的噪声设置中是否有效、平均场近似保持不变的最佳时间尺度以及急剧的收敛速度。第二部分涉及超临界平均场标度制度,牛顿第二定律或半经典薛定谔方程的奇异极限导致理想流体的欧拉方程的动力学推广。我们的目标是通过分析和数值方法,通过建立单动力学的情况下,限制方程减少到不可压缩的欧拉方程和绘制连接到准中性的限制等离子体物理学的进展,以确定此限制的有效性的最佳范围。测量收敛性的一个重要量是调制的能量熵或自由能,它与库仑气体和里兹气体的统计力学中出现的重整化能量有关。研究这些量及其沿着传输场的变化会导致换向器类型的函数不等式,从而与独立利益的调和分析建立新的联系。该奖项反映了NSF的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosenzweig其他文献
A potentially life-threatening complication after hepatectomy for living donation
活体供肝肝切除术后可能危及生命的并发症
- DOI:
10.1016/j.ajt.2023.01.015 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:8.200
- 作者:
Michele Finotti;Matthew Rosenzweig;Amar Gupta;Giuliano Testa - 通讯作者:
Giuliano Testa
Evaluation of a deceased donor liver allograft from a COVID-positive donor
对来自新冠病毒阳性供者的已故供肝移植物的评估
- DOI:
10.1111/ajt.16999 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:8.200
- 作者:
Matthew Rosenzweig;Michele Finotti;Eric Martinez;Giuliano Testa - 通讯作者:
Giuliano Testa
Relative entropy and modulated free energy without confinement via self-similar transformation
通过自相似变换获得无限制的相对熵和调制自由能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew Rosenzweig;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
Matthew Rosenzweig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosenzweig', 18)}}的其他基金
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2206085 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
- 批准号:
2247846 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2206085 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Fabrication of Ultra-Strong Glasses via Spatiotemporal Dissipative Structure of Singular Stress Field
利用奇异应力场时空耗散结构制造超强玻璃
- 批准号:
21K18837 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Properties of Solutions to Singular Stochastic Partial Differential Equations from Quantum Field Theory
职业:量子场论奇异随机偏微分方程解的性质
- 批准号:
2044415 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Singular topological field theory and classifying spaces of derived manifolds
奇异拓扑场论和导出流形的空间分类
- 批准号:
19K14522 - 财政年份:2019
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1310746 - 财政年份:2012
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1109682 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Research for application for specific field in new singular value decomposition
新奇异值分解的特定领域应用研究
- 批准号:
18700025 - 财政年份:2006
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of the spectrum of the Pauli and Dirac operators with singular magnetic field
奇异磁场下泡利算子和狄拉克算子谱的研究
- 批准号:
18540215 - 财政年份:2006
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Renormalization, Path Integrals, and Applications of Conformal Quantum Mechanics, Singular Potentials, and Quantum Field Theory
合作研究:重整化、路径积分以及共形量子力学、奇异势和量子场论的应用
- 批准号:
0308435 - 财政年份:2003
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant