Regression Quantiles Computation and Applications
回归分位数计算和应用
基本信息
- 批准号:9703758
- 负责人:
- 金额:$ 17.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Portnoy 9703758: Traditional Statistical Linear Modeling seeks to explain a response variable (e.g., wages) in terms of predictor variables (e.g., education, job training, social characteristics, etc.). The classical approach uses "lease squares" to estimate the mean of the responses conditional on the predictors. It is often found, however, that those with higher responses depend very differently on the predictors than those with middle or lower responses. This variability is completely lost by the classical approach. Thus, modern regression quantile methods have become increasingly popular. These methods seek to estimate the conditional quantiles (percentiles) of the response in terms of the predictors. For example, it has been found that high wages depend much more strongly on education than lower wages. That is, not only are high wages associated with more education, but the rate of return on education is significantly higher for high wage earners than for lower wage earners. Similarly, high electricity consumers during the summer show a much greater difference between daytime peak use and nighttime use than lower users (presumably because of air conditioners), and the length of long hospital stays depends more strongly on the severity of the disease than does the length of shorter stays. This ability to distinguish models on the basis of the size of the response is finding extensive application in economics, social sciences, biostatistics, and other areas. Inevitably, successful continued diffusion of these methods is linked closely to the availability of convenient and efficient software. For modestly large problems, existing algorithms require computational effort comparable to least squares. However, as problem size grows, the computational burden of the previous methods becomes heavy. For large problems common in empirical labor economics, large biomedical surveys, and other areas, new and more efficient computational techniques would be highly des irable. Thus, recent research proposes a two-pronged attack that has been shown to yield dramatic improvements in computational efficiency. One prong is the use of recently developed interior point methods for linear programming. The second is a form of stochastic preprocessing which can drastically reduce the effective size of most statistical regression quantile problems. Together, these ideas appear capable of bringing the computational effort down to the level of least squares for problems with sample sizes up to several million observations. In even larger problems, theoretical evidence indicates that regression quantile methods are even faster than least squares. Practical realization of this theoretical improvement would have significant consequences in the area of high performance computation for large and massive data sets.
Portnoy 9703758:传统统计线性模型试图根据预测变量(例如教育、职业培训、社会特征等)来解释响应变量(例如工资)。 经典方法使用“租赁平方”来估计以预测变量为条件的响应平均值。 然而,人们经常发现,那些反应较高的人与反应中等或较低的人对预测变量的依赖有很大不同。 经典方法完全丧失了这种可变性。 因此,现代回归分位数方法变得越来越流行。 这些方法试图根据预测变量估计响应的条件分位数(百分位数)。 例如,人们发现高工资比低工资更依赖于教育。 也就是说,高工资不仅与较高的教育程度相关,而且高工资收入者的教育回报率也明显高于低工资收入者。 同样,夏季用电量大的用户在白天高峰用电和夜间用电之间的差异比用电少的用户大得多(可能是因为空调的原因),而且与较短住院时间相比,长期住院时间更取决于疾病的严重程度。 这种根据响应大小区分模型的能力正在经济学、社会科学、生物统计学和其他领域得到广泛应用。 不可避免的是,这些方法的成功持续传播与方便高效的软件的可用性密切相关。 对于适度大的问题,现有算法需要与最小二乘法相当的计算量。 然而,随着问题规模的增大,以前方法的计算负担变得很重。 对于实证劳动经济学、大型生物医学调查和其他领域中常见的大型问题,非常需要新的、更有效的计算技术。 因此,最近的研究提出了一种双管齐下的攻击,该攻击已被证明可以显着提高计算效率。 其中之一是使用最近开发的内点方法进行线性规划。 第二种是随机预处理的一种形式,它可以大大减少大多数统计回归分位数问题的有效大小。 总之,这些想法似乎能够将样本量高达数百万个观测值的问题的计算量降低到最小二乘水平。 在更大的问题中,理论证据表明回归分位数方法甚至比最小二乘法更快。 这一理论改进的实际实现将对大型和海量数据集的高性能计算领域产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Portnoy其他文献
Specification tests in mixed effects models
- DOI:
10.1016/j.jspi.2011.02.004 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:
- 作者:
Simos G. Meintanis;Stephen Portnoy - 通讯作者:
Stephen Portnoy
The jackknife’s edge: Inference for censored regression quantiles
- DOI:
10.1016/j.csda.2013.10.017 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Stephen Portnoy - 通讯作者:
Stephen Portnoy
Valid Confidence Intervals for $$\mu , \sigma $$ When There Is Only One Observation Available
- DOI:
10.1007/s13171-023-00338-2 - 发表时间:
2024-05-24 - 期刊:
- 影响因子:0.500
- 作者:
Anirban DasGupta;Stephen Portnoy - 通讯作者:
Stephen Portnoy
Canonical quantile regression
- DOI:
10.1016/j.jmva.2022.105071 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Stephen Portnoy - 通讯作者:
Stephen Portnoy
On Extreme Regression Quantiles
- DOI:
10.1023/a:1009931219041 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Stephen Portnoy;Jana Jurecčkova´ - 通讯作者:
Jana Jurecčkova´
Stephen Portnoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Portnoy', 18)}}的其他基金
Regression Quantiles and Global Measures of Robustness
回归分位数和全局稳健性度量
- 批准号:
8922472 - 财政年份:1990
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regression Quantile Methods and Asymptotic Statistical Theory
数学科学:回归分位数方法和渐近统计理论
- 批准号:
8802555 - 财政年份:1988
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Linear Models: Theory and Applications
数学科学:线性模型:理论与应用
- 批准号:
8503785 - 财政年份:1985
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Robust Regression and Sequential Estimation
数学科学:鲁棒回归和序贯估计
- 批准号:
8301834 - 财政年份:1983
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
相似海外基金
LEAPS-MPS: Functional Data Analysis for Conditional Quantiles with Applications in Medical Studies
LEAPS-MPS:条件分位数的功能数据分析及其在医学研究中的应用
- 批准号:
2213140 - 财政年份:2022
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
- 批准号:
2012298 - 财政年份:2020
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Semiparametric Adaptive Designs and Statistical Inference for Both the Mean and the Quantiles
均值和分位数的半参数自适应设计和统计推断
- 批准号:
2014951 - 财政年份:2020
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
- 批准号:
2012448 - 财政年份:2020
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Multivariate Quantiles for Rapid Spatio-Temporal Threat Detection
ATD:协作研究:用于快速时空威胁检测的多元分位数
- 批准号:
1737915 - 财政年份:2017
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
ATD: Collaborative Research: Multivariate Quantiles for Rapid Spatio-Temporal Threat Detection
ATD:协作研究:用于快速时空威胁检测的多元分位数
- 批准号:
1737865 - 财政年份:2017
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Approximation de la distribution empirique sur des données distribuées en utilisant les quantiles
使用分位数进行分布经验近似
- 批准号:
509883-2017 - 财政年份:2017
- 资助金额:
$ 17.24万 - 项目类别:
University Undergraduate Student Research Awards
ATD: Collaborative Research: Multivariate Quantiles for Rapid Spatio-Temporal Threat Detection
ATD:协作研究:用于快速时空威胁检测的多元分位数
- 批准号:
1737918 - 财政年份:2017
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Understanding Regression Heterogeneity Through Joint Estimation of Conditional Quantiles
通过条件分位数的联合估计了解回归异质性
- 批准号:
1613173 - 财政年份:2016
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Multivariate ranks and quantiles
多元排名和分位数
- 批准号:
356491-2013 - 财政年份:2014
- 资助金额:
$ 17.24万 - 项目类别:
Discovery Grants Program - Individual