Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management

合作提案:风险量化和管理中高分位数的模型和方法

基本信息

项目摘要

In recent years, vulnerabilities in financial markets, economies, and public health have posed increasingly severe risks to society. For monitoring natural disasters and forecasting epidemics, financial institutions and governmental organizations must invest in risk intelligence to clearly define, understand, measure, quantify, and manage their tolerance for and exposure to risk. By employing rigorous and robust analytics to measure, quantify, and forecast risk, business leaders and regulators can rely less on intuition and more on systematic methodologies to manage risk well and make sound policy decisions. This project will develop improved and powerful analytic tools for applied researchers, regulators, and practitioners to conduct risk assessment. These tools and techniques will have broad impacts in wide-ranging fields such as economics, finance, and insurance. The project also intends to provide training opportunities for graduate students and broaden the participation of underrepresented groups in statistics and actuarial science. This research project focuses on the uncertainty quantification, back-test, and sensitivity analysis for both conditional and unconditional risk measures computed from mathematical models. This project develops a computationally efficient two-step inference for an ARMA-GARCH model and fits parametric and semi-parametric distribution family to residuals. The investigators will study semi-supervised learning for risk analysis when other variables with a large sample size are available. They also plan to validate residual-based bootstrap methods for quantifying risk uncertainty and develop efficient ways for risk forecasts and back-tests. The new methodologies combine some modern statistical techniques such as extreme value theory for forecasting catastrophic risk, weighted estimation for handling both infinite variance and persistent volatility, and empirical likelihood method for efficient hypothesis testing. These techniques are robust and applicable to various problems in risk management and other research fields requiring uncertainty quantification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,金融市场、经济和公共卫生的脆弱性给社会带来了越来越严重的风险。为了监测自然灾害和预测流行病,金融机构和政府组织必须投资于风险情报,以明确定义、理解、衡量、量化和管理其对风险的承受能力和风险敞口。通过采用严格和强大的分析来衡量,量化和预测风险,企业领导者和监管机构可以减少对直觉的依赖,更多地依赖系统方法来管理风险并做出合理的政策决策。该项目将为应用研究人员、监管机构和从业人员开发改进的、强大的分析工具,以进行风险评估。这些工具和技术将在经济、金融和保险等广泛领域产生广泛影响。该项目还打算为研究生提供培训机会,并扩大代表人数不足的群体对统计和精算学的参与。本研究主要针对由数学模型所计算出的条件风险与无条件风险的不确定性量化、回测与敏感度分析。本计画针对ARMA-GARCH模型发展一个计算效率高的两步推论,并将参数与半参数分布族拟合至残差。研究人员将在其他大样本变量可用时研究半监督学习的风险分析。他们还计划验证用于量化风险不确定性的基于残差的自助方法,并开发有效的风险预测和回测方法。新方法结合了联合收割机的一些现代统计技术,如极值理论预测的灾难性风险,加权估计处理无穷大的方差和持续波动,和经验似然法有效的假设检验。这些技术是强大的,适用于风险管理和其他研究领域的各种问题,需要不确定性quantitation.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Risk Analysis via Generalized Pareto Distributions.
Test for Market Timing Using Daily Fund Returns
  • DOI:
    10.1080/07350015.2021.2006670
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Lei Jiang;Weimin Liu;Liang Peng
  • 通讯作者:
    Lei Jiang;Weimin Liu;Liang Peng
Nonparametric tests for market timing using daily mutual fund returns
使用每日共同基金回报对市场时机进行非参数检验
Empirical likelihood test for the application of swqmele in fitting an arma-garch model
  • DOI:
    10.1111/jtsa.12563
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Zhou Mo;Peng Liang;Zhang Rongmao
  • 通讯作者:
    Zhang Rongmao
TEST FOR ZERO MEDIAN OF ERRORS IN AN ARMA-GARCH MODEL
ARMA-GARCH 模型的零均值和零中位数测试
  • DOI:
    10.1017/s0266466621000244
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Ma, Yaolan;Zhou, Mo;Zhang, Rongmao
  • 通讯作者:
    Zhang, Rongmao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Peng其他文献

A systematic mapping study on crowdsourced requirements engineering using user feedback
利用用户反馈进行众包需求工程的系统映射研究
Genetic diversity in intraspecific hybrid populations of Eucommia ulmoides Oliver evaluated from ISSR and SRAP molecular marker analysis.
通过ISSR和SRAP分子标记分析评估杜仲种内杂种群体的遗传多样性。
  • DOI:
    10.4238/2015.july.3.17
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Jing Yu;Yang Wang;Mei Ru;Liang Peng;Zhanfeng Liang
  • 通讯作者:
    Zhanfeng Liang
Upcycling contaminated biomass into metal-supported heterogeneous catalyst for electro-Fenton degradation of thiamethoxam: Preparation, mechanisms, and implications
将受污染的生物质升级改造为金属负载的多相催化剂,用于电芬顿降解噻虫嗪:制备、机制和影响
  • DOI:
    10.1016/j.cej.2022.139814
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Youzheng Chai;Ma Bai;Anwei Chen;Xiyan Xu;Zhaohui Tong;Jiayi Yuan;Liang Peng;Jihai Shao;Jiahao Xiong;Cheng Peng
  • 通讯作者:
    Cheng Peng
MnO2 polymorphs for catalytic carboxylation of 1-butanamine by CO2
用于 CO2 催化 1-丁胺羧化的 MnO2 多晶型物
  • DOI:
    10.1016/j.jcou.2021.101525
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Dalei Sun;Liang Peng;Yating Yang;Jiahui Ye;Yanxiong Fang;San Ping Jiang;Zongping Shao
  • 通讯作者:
    Zongping Shao
Differential Proteomics Analysis of Penaeus vannamei Muscles with Quality Characteristics by TMT Quantitative Proteomics during Low-Temperature Storage
利用TMT定量蛋白质组学方法对南美白对虾低温储存过程中肌肉质量特性进行差异蛋白质组学分析

Liang Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Peng', 18)}}的其他基金

Participant Support for the 8th Conference on Extreme Value Analysis
第八届极值分析会议与会者支持
  • 批准号:
    1258701
  • 财政年份:
    2013
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Computation in Empirical Likelihood Methods
协作研究:减少经验似然法的计算量
  • 批准号:
    1005336
  • 财政年份:
    2010
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Copulas, Tail Copulas, Garch and Extreme Values in Dependence Modelling and Risk Management
合作研究:依赖建模和风险管理中的 Copulas、Tail Copulas、Garch 和极值
  • 批准号:
    0631608
  • 财政年份:
    2006
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Statistical Inference Based on Data Tilting
基于数据倾斜的统计推断
  • 批准号:
    0403443
  • 财政年份:
    2004
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
  • 批准号:
    2231705
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
  • 批准号:
    2146687
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
  • 批准号:
    2146640
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
RAPID: Collaborative Proposal: Development of Digital Models of Minerals and Rocks for Online Geoscience Classes
RAPID:合作提案:为在线地球科学课程开发矿物和岩石数字模型
  • 批准号:
    2035243
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
  • 批准号:
    2012298
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Proposal: Development of Digital Models of Minerals and Rocks for Online Geoscience Classes
RAPID:合作提案:为在线地球科学课程开发矿物和岩石数字模型
  • 批准号:
    2035235
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Engineering Architecture for Tissue Models
合作提案:组织模型的工程架构
  • 批准号:
    1804743
  • 财政年份:
    2018
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
  • 批准号:
    1440315
  • 财政年份:
    2014
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
  • 批准号:
    1440229
  • 财政年份:
    2014
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
  • 批准号:
    1440333
  • 财政年份:
    2014
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了