Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
基本信息
- 批准号:2012298
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, vulnerabilities in financial markets, economies, and public health have posed increasingly severe risks to society. For monitoring natural disasters and forecasting epidemics, financial institutions and governmental organizations must invest in risk intelligence to clearly define, understand, measure, quantify, and manage their tolerance for and exposure to risk. By employing rigorous and robust analytics to measure, quantify, and forecast risk, business leaders and regulators can rely less on intuition and more on systematic methodologies to manage risk well and make sound policy decisions. This project will develop improved and powerful analytic tools for applied researchers, regulators, and practitioners to conduct risk assessment. These tools and techniques will have broad impacts in wide-ranging fields such as economics, finance, and insurance. The project also intends to provide training opportunities for graduate students and broaden the participation of underrepresented groups in statistics and actuarial science. This research project focuses on the uncertainty quantification, back-test, and sensitivity analysis for both conditional and unconditional risk measures computed from mathematical models. This project develops a computationally efficient two-step inference for an ARMA-GARCH model and fits parametric and semi-parametric distribution family to residuals. The investigators will study semi-supervised learning for risk analysis when other variables with a large sample size are available. They also plan to validate residual-based bootstrap methods for quantifying risk uncertainty and develop efficient ways for risk forecasts and back-tests. The new methodologies combine some modern statistical techniques such as extreme value theory for forecasting catastrophic risk, weighted estimation for handling both infinite variance and persistent volatility, and empirical likelihood method for efficient hypothesis testing. These techniques are robust and applicable to various problems in risk management and other research fields requiring uncertainty quantification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,金融市场、经济和公共卫生的脆弱性给社会带来了越来越严重的风险。为了监测自然灾害和预测流行病,金融机构和政府组织必须投资于风险情报,以明确定义、理解、衡量、量化和管理其对风险的承受能力和风险敞口。通过采用严格和强大的分析来衡量,量化和预测风险,企业领导者和监管机构可以减少对直觉的依赖,更多地依赖系统方法来管理风险并做出合理的政策决策。该项目将为应用研究人员、监管机构和从业人员开发改进的、强大的分析工具,以进行风险评估。这些工具和技术将在经济、金融和保险等广泛领域产生广泛影响。该项目还打算为研究生提供培训机会,并扩大代表人数不足的群体对统计和精算学的参与。本研究主要针对由数学模型所计算出的条件风险与无条件风险的不确定性量化、回测与敏感度分析。本计画针对ARMA-GARCH模型发展一个计算效率高的两步推论,并将参数与半参数分布族拟合至残差。研究人员将在其他大样本变量可用时研究半监督学习的风险分析。他们还计划验证用于量化风险不确定性的基于残差的自助方法,并开发有效的风险预测和回测方法。新方法结合了联合收割机的一些现代统计技术,如极值理论预测的灾难性风险,加权估计处理无穷大的方差和持续波动,和经验似然法有效的假设检验。这些技术是强大的,适用于风险管理和其他研究领域的各种问题,需要不确定性quantitation.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hedging and Evaluating Tail Risks via Two Novel Options Based on Type II Extreme Value Distribution
- DOI:10.3390/sym13091630
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Hang Lin;Lixin Liu;Zhengjun Zhang
- 通讯作者:Hang Lin;Lixin Liu;Zhengjun Zhang
New extreme value theory for maxima of maxima
- DOI:10.1080/24754269.2020.1846115
- 发表时间:2020-12
- 期刊:
- 影响因子:0.5
- 作者:Wenzhi Cao;Zhengjun Zhang
- 通讯作者:Wenzhi Cao;Zhengjun Zhang
Extreme co-movements between infectious disease events and crude oil futures prices: From extreme value analysis perspective
- DOI:10.1016/j.eneco.2022.106054
- 发表时间:2022-06
- 期刊:
- 影响因子:12.8
- 作者:Hang Lin;Zhengjun Zhang
- 通讯作者:Hang Lin;Zhengjun Zhang
Modeling Multivariate Time Series With Copula-Linked Univariate D-Vines
使用 Copula 链接单变量 D-Vines 建模多元时间序列
- DOI:10.1080/07350015.2020.1859381
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Zhao, Zifeng;Shi, Peng;Zhang, Zhengjun
- 通讯作者:Zhang, Zhengjun
Currency exchange rate predictability: The new power of Bitcoin prices
货币汇率可预测性:比特币价格的新力量
- DOI:10.1016/j.jimonfin.2023.102811
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Feng, Wenjun;Zhang, Zhengjun
- 通讯作者:Zhang, Zhengjun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhengjun Zhang其他文献
Efficient Hydrogen Evolution Reaction on Ni3S2 Nanorods with a P/N Bipolar Electrode Prepared by Dealloying Sulfurization of NiW Amorphous Alloys
NiW非晶合金脱合金硫化制备的P/N双极电极对Ni3S2纳米棒进行高效析氢反应
- DOI:
10.1021/acsaem.0c00690 - 发表时间:
2020-05 - 期刊:
- 影响因子:6.4
- 作者:
Jianyue Chen;Yunhan Ling;Zhaoxia Lu;Zhengjun Zhang - 通讯作者:
Zhengjun Zhang
Impact of heat on all-cause and cause-specific mortality: A multi-city study in Texas.
高温对全因和特定原因死亡率的影响:德克萨斯州的一项多城市研究。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.3
- 作者:
Chunyu Guo;Kevin Lanza;Dongying Li;Yuyu Zhou;K. Aunan;B. Loo;Jason Lee;B. Luo;Xiaoli Duan;Wangjian Zhang;Zhengjun Zhang;Shao Lin;Kai Zhang - 通讯作者:
Kai Zhang
An extension of max autoregressive models
最大自回归模型的扩展
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
P. Naveau;Zhengjun Zhang;Bin Zhu - 通讯作者:
Bin Zhu
Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine
两次引燃喷射对 PCCI 柴油机燃烧和排放的影响
- DOI:
10.3390/en14061651 - 发表时间:
2021-03 - 期刊:
- 影响因子:3.2
- 作者:
Deqing Mei;Qisong Yu;Zhengjun Zhang;Shan Yue;Lizhi Tu - 通讯作者:
Lizhi Tu
Stock Market Interactions Driven by Large Declines
大幅下跌推动股市互动
- DOI:
10.2753/ree1540-496x5005s511 - 发表时间:
2014 - 期刊:
- 影响因子:4
- 作者:
Yong Ma;Wei;Zhengjun Zhang;Weidong Xu - 通讯作者:
Weidong Xu
Zhengjun Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhengjun Zhang', 18)}}的其他基金
Max-Linear Competing Factor Models and Applications
最大线性竞争因子模型和应用
- 批准号:
1505367 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
New Developments of Nonlinear Dependent Models, with Applications in Genetics, Finance and the Environment
非线性相关模型的新发展及其在遗传学、金融和环境中的应用
- 批准号:
0804575 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Quotient Correlation, Nonlinear Dependence, and Extreme Dependence Modeling
商相关性、非线性相关性和极端相关性建模
- 批准号:
0505528 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Quotient Correlation, Nonlinear Dependence, and Extreme Dependence Modeling
商相关性、非线性相关性和极端相关性建模
- 批准号:
0630210 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
SGER: Statistics of Extremes, with Applications in Financial Time Series
SGER:极值统计及其在金融时间序列中的应用
- 批准号:
0443048 - 财政年份:2004
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
- 批准号:
2231705 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
- 批准号:
2146687 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
- 批准号:
2146640 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
RAPID: Collaborative Proposal: Development of Digital Models of Minerals and Rocks for Online Geoscience Classes
RAPID:合作提案:为在线地球科学课程开发矿物和岩石数字模型
- 批准号:
2035243 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
- 批准号:
2012448 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RAPID: Collaborative Proposal: Development of Digital Models of Minerals and Rocks for Online Geoscience Classes
RAPID:合作提案:为在线地球科学课程开发矿物和岩石数字模型
- 批准号:
2035235 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Proposal: Engineering Architecture for Tissue Models
合作提案:组织模型的工程架构
- 批准号:
1804743 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
- 批准号:
1440315 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
- 批准号:
1440229 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
- 批准号:
1440333 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant