RUI: Linear and Nonlinear Excitations in Layered Antiferromagnets and Nanostructured Magnets
RUI:层状反铁磁体和纳米结构磁体中的线性和非线性激励
基本信息
- 批准号:9703783
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-05-15 至 2000-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9703783 Stamps This grant supports the work of a young theorist at a predominantly undergraduate institution. The research projects in this grant are a continuation of seminal work by this PI on dynamical properties of magnetic moments in magnetic thin films and epitaxially grown magnetic superlattices. Here the PI is proposing work on a possible new way of determining the exchange coupling between thin magnetic films by examining the properties of domain wall resonance. Other projects consist of: (1) Role of structural defects on the magnetic order and magnetic phase transition in thin films and (2) study of dynamic nonlinear effects in arrays of quantum dots. %%% This young PI, at a predominantly undergraduate institution, is being supported to work on the theory of magnetism in thin films and very small grains. Some of the research focuses on finite frequency behavior. The PI suggests that one can gather information about the magnetic interactions by studying the motion of domain walls with respect to each other, in adjacent thin films. He is planning to develop a theoretical formalism to describe the high power absorption in arrays of very small grains. Finally he is also planning to study the relationship between structural defects and the magnetic order and magnetic phase transitions in thin films. ***
9703783邮票这项资助支持一位年轻理论家在以本科生为主的机构的工作。该基金的研究项目是该PI在磁性薄膜和外延生长磁超晶格中磁矩的动力学特性方面的开创性工作的延续。在这里,PI提出了一种可能的新方法,通过检查畴壁共振的性质来确定磁性薄膜之间的交换耦合。其他项目包括:(1)结构缺陷对薄膜磁有序和磁相变的影响;(2)量子点阵列的动态非线性效应研究。这位年轻的PI,在一个主要是本科生的机构,被支持研究薄膜和非常小颗粒的磁性理论。一些研究侧重于有限频率的行为。PI表明,人们可以通过研究相邻薄膜中畴壁相对于彼此的运动来收集有关磁相互作用的信息。他计划开发一种理论形式来描述非常小的颗粒阵列的高功率吸收。最后,他还计划研究薄膜中结构缺陷与磁有序和磁相变之间的关系。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Stamps其他文献
キラルソリトン格子磁気共鳴の磁場依存性
手性孤子晶格磁共振的磁场依赖性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
十河忠幸;Francisco Goncalves;吉澤大智;萩原政幸;Robert Stamps;高阪勇輔;秋光純;西原禎文;井上克也;I. G. Bostrem;Vl. E. Sinitsyn;A. S. Ovchinnikov;岸根順一郎;戸川欣彦 - 通讯作者:
戸川欣彦
An experimental investigation of dynamic behavior in FePt systems
FePt 系统动态行为的实验研究
- DOI:
10.1088/0953-8984/21/12/124203 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Rebecca O. Fuller;George A. Koutsantonis;Robert Stamps - 通讯作者:
Robert Stamps
Skyrmion Resonance in Coupled Films
耦合薄膜中的斯格明子共振
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
正木祐輔;Robert Stamps - 通讯作者:
Robert Stamps
CrNb3S6における磁気共鳴のサイズ依存性
CrNb3S6 磁共振的尺寸依赖性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
島本雄介;十河忠幸;Francisco Goncalves;吉澤大智;萩原政幸;Robert Stamps;高阪勇輔;秋光純;西原禎文;井上克也;I. G. Bostrem;Vl. E. Sinitsyn;A. S. Ovchinnikov;岸根順一郎;戸川欣彦 - 通讯作者:
戸川欣彦
Robert Stamps的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Stamps', 18)}}的其他基金
Consortium for advanced materials based on spin chirality
基于自旋手性的先进材料联盟
- 批准号:
EP/M024423/1 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grant
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
- 批准号:
EP/L002922/1 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grant
U.S.-France Cooperative Research: New Directions for Artificially Structured Magnetic Materials
美法合作研究:人工结构磁性材料的新方向
- 批准号:
9603252 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
New nonlinear control based on specific state transitions---to represent nonlinear systems by switching linear systems
基于特定状态转移的新型非线性控制——通过切换线性系统来表示非线性系统
- 批准号:
23K03911 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Linear and Nonlinear Tides in Coalescing Binary Neutron Stars
聚结双中子星中的线性和非线性潮汐
- 批准号:
2308415 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
- 批准号:
532522-2019 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
- 批准号:
2149082 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
RGPIN-2021-04311 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Linear and nonlinear modeling of fundamental theory explaining the prescription system of Kampo (traditional Japanese medicine) formulas based on chemistry and data science
基于化学和数据科学的解释汉方(传统日本医学)处方系统的基础理论的线性和非线性建模
- 批准号:
22K06690 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
DGECR-2021-00402 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement