Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
基本信息
- 批准号:RGPIN-2021-04311
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partial differential equations (PDEs) are widely used as the mathematical model for problems arising in physics, biology or engineering. In most cases, these problems depend on many parameters, for instance the geometry of the physical domain, the boundary/initial conditions or the coefficients, yielding so-called parametric partial differential equations (PDEs). Nowadays, it is common to include the inherent uncertainty affecting these complex phenomena in the mathematical model. A way to model the uncertainty is to use random variables or random fields. Such PDE with random input has an equivalent parametric deterministic formulation, where the parameter space is endowed with a probability measure. The long-term goal of this program is to design, analyze and implement numerical methods for approximating the solutions to parametric/random PDEs. The main focus will be on model order reduction techniques and adaptive strategies for the so-called forward problem: given a value of the parameter (in some parameter space), find an approximation of the corresponding solution. In order to have methods that are immune to the so-called curse of dimensionality, emphasis will be given to high-dimensional problems, namely when the dimension of the parameter space is large or even infinite. The main objectives are: (I) to compare linear reduced models and apply them to problems of practical interest; (II) to design and analyze nonlinear reduced models with provable performance guarantees; (III) to introduce adaptive strategies for solving random PDEs and compare them to existing methods. A prominent efficient linear reduced model is the reduced basis method. This method hinges on the potential smoothness of the solution with respect to the parameters to build a linear space in which the solution is approximated. The linear space is the span of so-called snapshots, namely the solution of the problem for suitably selected values of the parameters. In some cases, the construction of one linear space for approximating the parameter to solution map is not feasible numerically. It is well-known that nonlinear methods can provide improved efficiency. Recently, several nonlinear reduced methods have been developed and tested numerically. Contrary to linear reduced models, for which the theory is well-understood, little is known in terms of precise performance guarantees for nonlinear strategies. One of the main goals of this program is thus to develop new algorithms for constructing nonlinear reduced models and perform a precise analysis of their performances. This research program will train 3 PhD, 3 MSc and 2 BSc students, who will gain expertise in numerical analysis, and make significant progress in the development of numerical methods for solving parametric/random PDEs. Fast and efficient forward solvers with provable performance guarantees are essential tools in many applications, such as optimal engineering design, weather prediction or medical diagnosis.
偏微分方程(PDE)被广泛用于物理、生物或工程问题的数学模型。在大多数情况下,这些问题依赖于许多参数,例如物理域的几何形状、边界/初始条件或系数,从而产生所谓的参数偏微分方程(PDE)。如今,将影响这些复杂现象的固有不确定性包含在数学模型中是很常见的。对不确定性进行建模的一种方法是使用随机变量或随机场。这种具有随机输入的偏微分方程具等价的参数确定性公式,其中参数空间被赋予一个概率度量。该计划的长期目标是设计、分析和实现近似参数/随机偏微分方程组的解的数值方法。主要集中在模型降阶技术和所谓正问题的自适应策略上:给定一个参数值(在某个参数空间中),找到相应解的近似值。为了使方法不受所谓的维度灾难的影响,将重点放在高维问题上,即当参数空间的维度很大甚至是无穷大时。主要目标是:(I)比较线性简化模型并将其应用于实际感兴趣的问题;(Ii)设计和分析具有可证明性能保证的非线性简化模型;(Iii)引入求解随机偏微分方程组的自适应策略,并将其与现有方法进行比较。一种非常有效的线性约简模型是约化基法。这种方法依赖于解相对于参数的潜在光滑性,以建立一个线性空间,在这个空间中近似解。线性空间是所谓的快照的范围,即参数的适当选择的值的问题的解。在某些情况下,构造一个线性空间来逼近参数到解的映射在数值上是不可行的。众所周知,非线性方法可以提高效率。近年来,已发展了几种非线性降阶方法,并进行了数值试验。与理论广为人知的线性简化模型相反,关于非线性策略的精确性能保证,人们知之甚少。因此,该计划的主要目标之一是开发构建非线性简化模型的新算法,并对其性能进行精确分析。这项研究计划将培养3名博士、3名硕士和2名理科学生,他们将获得数值分析方面的专业知识,并在解决参数/随机偏微分方程组的数值方法的开发方面取得重大进展。在优化工程设计、天气预报或医疗诊断等许多应用中,具有可证明的性能保证的快速、高效的正解算法是必不可少的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guignard, Diane其他文献
A posteriori error estimation for the steady Navier-Stokes equations in random domains
- DOI:
10.1016/j.cma.2016.10.008 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:7.2
- 作者:
Guignard, Diane;Nobile, Fabio;Picasso, Marco - 通讯作者:
Picasso, Marco
Finite element approximation of steady flows of colloidal solutions
胶体溶液稳定流动的有限元近似
- DOI:
10.1051/m2an/2021043 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Bonito, Andrea;Girault, Vivette;Guignard, Diane;Rajagopal, Kumbakonam R.;Süli, Endre - 通讯作者:
Süli, Endre
Numerical analysis of the LDG method for large deformations of prestrained plates
预应变板大变形LDG法数值分析
- DOI:
10.1093/imanum/drab103 - 发表时间:
2022 - 期刊:
- 影响因子:2.1
- 作者:
Bonito, Andrea;Guignard, Diane;Nochetto, Ricardo H.;Yang, Shuo - 通讯作者:
Yang, Shuo
LDG approximation of large deformations of prestrained plates
预应变板大变形的 LDG 近似
- DOI:
10.1016/j.jcp.2021.110719 - 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Bonito, Andrea;Guignard, Diane;Nochetto, Ricardo H.;Yang, Shuo - 通讯作者:
Yang, Shuo
Reduced basis approximations of the solutions to spectral fractional diffusion problems
光谱分数扩散问题解的简化基近似
- DOI:
10.1515/jnma-2019-0053 - 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
Bonito, Andrea;Guignard, Diane;Zhang, Ashley R. - 通讯作者:
Zhang, Ashley R.
Guignard, Diane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guignard, Diane', 18)}}的其他基金
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
DGECR-2021-00402 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
RGPIN-2021-04311 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
- 批准号:11105178
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非线性发展方程及其吸引子
- 批准号:10871040
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
大型机械结构非线性特性的实验辨识和物理仿真
- 批准号:50405043
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
半导体中激子的量子非线性光学的研究
- 批准号:10474025
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
- 批准号:70471078
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
NNA Research: Development of a Nonlinear Reduced Order Modeling Framework for Marine Structures Operating in The Arctic and Sub-Arctic Regions
NNA 研究:为北极和亚北极地区运行的海洋结构开发非线性降阶建模框架
- 批准号:
2127095 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
- 批准号:
2130695 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
- 批准号:
2130727 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
DGECR-2021-00402 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
RGPIN-2021-04311 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Reduced Hamiltonian and Collisional Gyrokinetic Plasma Transport Models
非线性简化哈密顿量和碰撞回旋等离子体输运模型
- 批准号:
1805164 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
CAREER: Reduced-order Methods for Big-Data Challenges in Nonlinear and Stochastic Optimization
职业:非线性和随机优化中大数据挑战的降阶方法
- 批准号:
1637473 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Reduced-order methods for nonlinear model predictive control
非线性模型预测控制的降阶方法
- 批准号:
274852524 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Research Grants
Reduced Hierachal Equations of Motion for Exciton and electron transfer ssystems: Application to nonlinear response
激子和电子转移系统的简化层次运动方程:在非线性响应中的应用
- 批准号:
26248005 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Optimal Spatiotemporal Reduced Order Modeling for Nonlinear Structural Dynamics
非线性结构动力学的最优时空降阶建模
- 批准号:
1301093 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant