Research on Applied Nonlinear Analysis

应用非线性分析研究

基本信息

  • 批准号:
    9704325
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9704325 Roytburd The proposed investigations address two areas of applied mathematics that are both related to nonlinear wave propagation. One topic concerns the study of a class of free boundary (free interface) problems which arise naturally as simplified conceptual models of gasless combustion and fast solidification. These free boundary problems demonstrate an amazing variety of dynamical patterns that are essentially low-dimensional. The qualitative behavior of these model problems will be investigated both analytically and numerically. The principal focus will be on propagation in two spatial dimensions. Another topic is drawn from the field of nonlinear optics. It concerns the model laser dynamics which is described by the Maxwell-Bloch system of partial differential equations. The main thrust of the proposed research will be at establishing well-posedness for the Maxwell-Bloch equations with detuning and broadening, evaluation of the attractor dimension, and the rigorous study of the homoclinic chaos. A numerical investigation of laser turbulence is also planned. The proposed research is motivated by technological applications. One immediately related technological process is the self-propagating high temperature synthesis (SHS). The SHS process is currently being investigated as a new method of manufacturing certain ceramic and metallic alloys. The idea of the process is to combine the powdered ingredients and bake them into the desired product by sending a flame wave through the sample. The SHS process has a number of advantages over the traditional manufacturing methods in which the mixture is baked in a furnace: more uniform and pure products, shorter synthesis times, use of simpler and cheaper equipment etc. The source of the second proposed research topic lies in laser optics, namely basic dynamics of gaseous lasers that find a wide variety of applications. The goal of the proposed mathematical investigations is twofold. On one hand, through the study of special extreme regimes which are undesirable in technological applications, we propose to develop simplified diagnostic tools that will allow to predict and avoid these undesirable (chaotic) regimes. On the other hand, the study of the extreme regimes will further the better understanding of basic mechanisms that govern the technological regimes and therefore will promote their better control and utilization. The research will be conducted through a combination of analytical methods and computer simulations. The analysis will help to delineate crucial regimes and their logical structure, while the simulations will uncover details which are not amenable to analytical methods and, in their own turn, can lead to important mathematical developments.
提出的研究涉及应用数学的两个领域,这两个领域都与非线性波传播有关。其中一个课题是研究一类自由边界(自由界面)问题,这类问题是作为无气燃烧和快速凝固的简化概念模型自然产生的。这些自由边界问题展示了本质上是低维的各种各样的动态模式。这些模型问题的定性行为将进行分析和数值研究。主要的焦点将是在两个空间维度上的传播。另一个主题来自非线性光学领域。它涉及用偏微分方程组描述的模型激光动力学。本文的研究重点是建立具有失谐和展宽的麦克斯韦-布洛赫方程的适定性,评估吸引子维数,以及对同斜混沌的严格研究。本文还计划对激光湍流进行数值研究。提出的研究是由技术应用的动机。一个直接相关的技术过程是自传播高温合成(SHS)。SHS工艺目前正在作为一种制造某些陶瓷和金属合金的新方法进行研究。这个过程的想法是将粉末状的成分结合起来,并通过在样品中发射火焰波将它们烘烤成所需的产品。与在炉中烘烤混合物的传统制造方法相比,SHS工艺具有许多优点:产品更均匀和纯净,合成时间更短,使用更简单和更便宜的设备等。第二个提出的研究课题的来源在于激光光学,即广泛应用的气体激光器的基本动力学。所提出的数学研究的目标是双重的。一方面,通过对技术应用中不希望出现的特殊极端状态的研究,我们建议开发简化的诊断工具,以预测和避免这些不希望出现的(混沌)状态。另一方面,对极端制度的研究将进一步加深对控制技术制度的基本机制的理解,从而促进对技术制度的更好控制和利用。这项研究将通过分析方法和计算机模拟相结合的方式进行。分析将有助于描绘关键的制度及其逻辑结构,而模拟将揭示无法适用于分析方法的细节,并且反过来可以导致重要的数学发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Roytburd其他文献

Dynamics of SHS in periodic media
  • DOI:
    10.1016/j.na.2005.01.046
  • 发表时间:
    2005-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Frankel;Victor Roytburd
  • 通讯作者:
    Victor Roytburd

Victor Roytburd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Roytburd', 18)}}的其他基金

Mathematical Sciences: Dynamics of Detonations and Combustion Fronts
数学科学:爆炸和燃烧前沿的动力学
  • 批准号:
    9311659
  • 财政年份:
    1993
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamics of Detonations and Shock Induced Phase Changes
数学科学:爆炸动力学和冲击引起的相变
  • 批准号:
    8911888
  • 财政年份:
    1989
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Applied Nonlinear Analysis
数学科学:应用非线性分析研究
  • 批准号:
    8603506
  • 财政年份:
    1986
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stability and Bifurcations of Flame Fronts and Detonation Waves
数学科学:火焰锋和爆炸波的稳定性和分岔
  • 批准号:
    8408260
  • 财政年份:
    1985
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Stability and Bifurcations of Flame Fronts and Detonation Waves (Mathematical Sciences)
火焰锋和爆炸波的稳定性和分叉(数学科学)
  • 批准号:
    8201721
  • 财政年份:
    1982
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Applied Analysis for Emergent Nonlinear Wave Phenomena
突现非线性波现象的应用分析
  • 批准号:
    2108029
  • 财政年份:
    2021
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Deep Learning for Dynamical System Identification for Nonlinear Model Predictive Control applied to Renewable Energy and Energy Efficiency
用于可再生能源和能源效率的非线性模型预测控制动态系统辨识的深度学习
  • 批准号:
    555943-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
  • 批准号:
    2009647
  • 财政年份:
    2020
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
  • 批准号:
    2008568
  • 财政年份:
    2020
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Bifurcation theory as applied to nonlinear aeroelastics of wind turbine blades.
分岔理论应用于风力涡轮机叶片的非线性气动弹性。
  • 批准号:
    2268080
  • 财政年份:
    2019
  • 资助金额:
    $ 11万
  • 项目类别:
    Studentship
Applied Harmonic Analysis to Non-Convex Optimizations and Nonlinear Matrix Analysis
将调和分析应用于非凸优化和非线性矩阵分析
  • 批准号:
    1816608
  • 财政年份:
    2018
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences
应用科学中的非线性系统动力学
  • 批准号:
    1614964
  • 财政年份:
    2016
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
  • 批准号:
    1601475
  • 财政年份:
    2016
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Nonlinear response formalism applied to coherent control scenarios
非线性响应形式应用于相干控制场景
  • 批准号:
    483149-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 11万
  • 项目类别:
    University Undergraduate Student Research Awards
Applied analysis for nonlinear problems
非线性问题的应用分析
  • 批准号:
    15K21369
  • 财政年份:
    2015
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了