On the Dynamics of Nonlinear Systems in Applied Sciences

应用科学中的非线性系统动力学

基本信息

  • 批准号:
    1614964
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The analysis of multiphase flow models, such as models governing fluid-particle interaction and evolution of cells, is relevant to several practical applications in engineering and in physical and biomedical sciences. This project focuses on issues of stability, uniqueness and regularity, and numerical approximations for nonlinear models. In particular, the projects include analyzing systems involving moving domains or free boundaries and systems with stochastic forcing. The project includes undergraduates, graduate students, and post-doctoral associates in the research. This research project focuses on the modeling and mathematical analysis of nonlinear systems arising in physical and biological science and addresses themes in two interconnected directions: (a) hydrodynamic models within moving domains and free boundary problems, and (b) random perturbations of models of compressible fluids and multiphase flows. The mathematical analysis of these nonlinear models requires innovative ideas for the construction of suitable schemes for the approximation of their governing systems, as well as the development of new analytical techniques for the proof of well-posedness and convergence results in light of special features of the models that arise in applications. The goal of the project is the development of a variational framework able to treat a large class of multi-phase flows both analytically and computationally. The nonlinear systems under investigation include models of compressible fluids governed by the Navier-Stokes and Euler systems, Euler-kinetic fluid models, mixed-type hyperbolic-elliptic systems within fixed or moving domains, and free-boundary models.
多相流模型的分析,例如控制流体-颗粒相互作用和细胞进化的模型,与工程以及物理和生物医学科学中的几个实际应用有关。这个项目的重点是稳定性,唯一性和规律性,以及非线性模型的数值逼近问题。特别是,这些项目包括分析涉及移动域或自由边界的系统和随机强迫的系统。该项目包括本科生、研究生和博士后研究员。本研究项目侧重于物理和生物科学中出现的非线性系统的建模和数学分析,并在两个相互关联的方向上解决主题:(a)移动域和自由边界问题内的流体动力学模型,以及(B)可压缩流体和多相流模型的随机扰动。这些非线性模型的数学分析需要创新的想法,建设合适的计划,其管理系统的近似,以及新的分析技术的发展,证明适定性和收敛结果的特殊功能的模型中出现的应用。该项目的目标是发展一个变分框架,能够处理一个大类的多相流的分析和计算。所研究的非线性系统包括可压缩流体的Navier-Stokes和Euler系统模型、Euler动力学流体模型、固定域或移动域内的混合型双曲椭圆系统以及自由边界模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantina Trivisa其他文献

On the Motion of a Viscous Compressible Radiative-Reacting Gas
  • DOI:
    10.1007/s00220-006-1534-7
  • 发表时间:
    2006-03-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Donatella Donatelli;Konstantina Trivisa
  • 通讯作者:
    Konstantina Trivisa
On a free boundary problem for polymeric fluids: global existence of weak solutions

Konstantina Trivisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantina Trivisa', 18)}}的其他基金

RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
  • 批准号:
    2231533
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
  • 批准号:
    2008568
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    1211519
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
ON THE DYNAMICS OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES: TRANSPORT, MOTION AND MIXING
应用科学中某些非线性系统的动力学:输运、运动和混合
  • 批准号:
    1109397
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
On the Dynamics, Structure and Stability of Certain Nonlinear Systems in Applied Sciences
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    0807815
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Challenges in Systems with Semctic and Nematic Order
具有近序和向列序的系统面临的挑战
  • 批准号:
    0405853
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PECASE: Systems of Conservation Laws and Related Models in Applied Sciences - Math Awareness and Outreach
PECASE:应用科学中的守恒定律体系和相关模型 - 数学意识和推广
  • 批准号:
    0239063
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0196157
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0072496
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
  • 批准号:
    2350356
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
  • 批准号:
    RGPIN-2019-06698
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    2206500
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Parameterization and Reduction for Nonlinear Stochastic Systems with Applications to Fluid Dynamics
非线性随机系统的参数化和简化及其在流体动力学中的应用
  • 批准号:
    2108856
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
  • 批准号:
    RGPIN-2019-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
  • 批准号:
    RGPIN-2019-06698
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: The Nonlinear Stochastic Dynamics of Micro and Nanomechanical Systems
合作研究:微纳机械系统的非线性随机动力学
  • 批准号:
    2001403
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
  • 批准号:
    2008568
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: The Nonlinear Stochastic Dynamics of Micro and Nanomechanical Systems
合作研究:微纳机械系统的非线性随机动力学
  • 批准号:
    2001559
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    1909200
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了