The Nonlinear Dynamics of Filaments with Applications to Physics, Biology, and Engineering

细丝非线性动力学及其在物理、生物学和工程中的应用

基本信息

  • 批准号:
    9704421
  • 负责人:
  • 金额:
    $ 9.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-01 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

Tabor 9704421 Motivated by a range of problems and, in particular, the observed iterated, stretching and writhing motions of certain bacterial filaments, the investigator and his collaborator Isaac Klapper at Montana State University develop new techniques to study the linear and nonlinear stability of the time-dependent equations governing elastic filament dynamics (the Kirchhoff equations) and, in parallel, computational approaches to provide efficient numerical simulations. Overall, the investigators develop (i) new analytic techniques to study both the linear and nonlinear stability of elastic filaments, (ii) quantitative models of writhing instabilities and buckling phenomena in mechanical filaments, (iii) mathematical models of self-assembling bacterial fibers, lipid bi-layer roll-up and various aspects of DNA dynamics, (iv) efficient and flexible algorithms to simulate the described physical and biological processes and to test the validity of the (continuum) models, (v) discrete elastic models for simulating DNA conformations, (vi) theoretical and numerical models of solar magnetic fields with twist. A host of practical problems in the biological, physical and engineering sciences involve filamentary structures on scales varying from the microscopic to the macroscopic. These include, in progression of scales: molecular structures including DNA and lipid tubules and helices, bacterial fibers, vorticity filaments, ropes and cables, braided magnetic flux tubes as seen in solar flares, etc. The motion of these structures has a crucial impact on their structure and function. The investigators develop general computational methods to model these filaments and their uses, including the structure and function of DNA, and the self-assembly of advanced biomaterials.
Tabor 9704421受一系列问题,特别是观察到的某些细菌细丝的迭代、拉伸和扭转运动的驱使,蒙大拿州立大学的研究人员和他的合作者艾萨克·克拉珀开发了新的技术来研究控制弹性细丝动力学的依赖时间的方程(基尔霍夫方程)的线性和非线性稳定性,并并行地开发了计算方法来提供有效的数值模拟。总之,研究人员发展了(I)新的分析技术来研究弹性细丝的线性和非线性稳定性,(Ii)机械细丝中扭曲不稳定性和屈曲现象的定量模型,(Iii)自组装细菌纤维的数学模型,脂质双层卷曲和DNA动力学的各个方面,(Iv)高效和灵活的算法来模拟所描述的物理和生物过程并检验(连续)模型的有效性,(V)离散的弹性模型来模拟DNA构象,(Vi)带有扭曲的太阳磁场的理论和数值模型。生物、物理和工程科学中的许多实际问题涉及从微观到宏观的不同尺度上的丝状结构。这些结构包括:分子结构,包括DNA和脂类微管和螺旋、细菌纤维、涡度细丝、绳索和电缆、太阳耀斑中看到的编织磁通量管等。这些结构的运动对其结构和功能具有至关重要的影响。研究人员开发了通用的计算方法来模拟这些细丝及其用途,包括DNA的结构和功能,以及先进生物材料的自组装。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Tabor其他文献

Modern dynamics and classical analysis
现代动力学与经典分析
  • DOI:
    10.1038/310277a0
  • 发表时间:
    1984-07-26
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Michael Tabor
  • 通讯作者:
    Michael Tabor
Biomechanical model for appressorial design in <em>Magnaporthe grisea</em>
  • DOI:
    10.1016/j.jtbi.2005.08.014
  • 发表时间:
    2006-05-07
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Tongen;Alain Goriely;Michael Tabor
  • 通讯作者:
    Michael Tabor

Michael Tabor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Tabor', 18)}}的其他基金

The mathematics and mechanics of elastic growth; with biological and biomedical applications
弹性增长的数学和力学;
  • 批准号:
    0907773
  • 财政年份:
    2009
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Standard Grant
Increasing The Number of Highly Qualified Mathematical Scientists in the Workforce
增加劳动力中高素质数学科学家的数量
  • 批准号:
    0728684
  • 财政年份:
    2007
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Standard Grant
Enhancing the Mathematical Sciences Workforce (EMSW21-VIGRE)
增强数学科学劳动力 (EMSW21-VIGRE)
  • 批准号:
    0602173
  • 财政年份:
    2006
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Continuing Grant
IGERT: Multidisciplinary Training at the Interface of Biology, Mathematics and Physics
IGERT:生物学、数学和物理交叉的多学科培训
  • 批准号:
    9870659
  • 财政年份:
    1998
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Applied Mathematics Laboratory A New Concept in Graduate Training in Applied Mathematics
数学科学:应用数学实验室应用数学研究生培养的新理念
  • 批准号:
    9419313
  • 财政年份:
    1995
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Modelling of myosin V motor dynamics to understand its ATP-less walking along actin filaments under interactive high-speed AFM
肌球蛋白 V 运动动力学建模,以了解其在交互式高速 AFM 下沿肌动蛋白丝无 ATP 行走的情况
  • 批准号:
    21K03483
  • 财政年份:
    2021
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interaction of Vortex Filaments -Towards a Deeper Understanding of Vortex Dynamics-
涡旋细丝的相互作用 -深入了解涡旋动力学 -
  • 批准号:
    20K14348
  • 财政年份:
    2020
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Numerical investigation of plasma turbulence and filaments dynamics in three-dimensional tokamak geometries
三维托卡马克几何结构中等离子体湍流和细丝动力学的数值研究
  • 批准号:
    2430954
  • 财政年份:
    2020
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Studentship
Dynamics and organization of heterogeneous cytoskeletal filaments in cell-sized droplets
细胞大小的液滴中异质细胞骨架丝的动力学和组织
  • 批准号:
    19K03760
  • 财政年份:
    2019
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Investigation of the structure and dynamics of type IV pilus filaments using all-atom and coarse-grained molecular dynamics
RUI:利用全原子和粗粒分子动力学研究 IV 型菌毛丝的结构和动力学
  • 批准号:
    1817670
  • 财政年份:
    2018
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Standard Grant
Rupture Dynamics and Buckling Instabilities of Free-Standing Liquid Crystal Bridges and Filaments
独立式液晶桥和灯丝的断裂动力学和屈曲不稳定性
  • 批准号:
    255351155
  • 财政年份:
    2014
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Research Grants
Dynamics and cryo-observation of organelles and actin filaments in plant cells living under freezing
冷冻植物细胞中细胞器和肌动蛋白丝的动态和冷冻观察
  • 批准号:
    25292205
  • 财政年份:
    2013
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics of myosin filaments in single smooth muscle cells
单个平滑肌细胞中肌球蛋白丝的动力学
  • 批准号:
    355639-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of myosin filaments in single smooth muscle cells
单个平滑肌细胞中肌球蛋白丝的动力学
  • 批准号:
    355639-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative RUI. Nonlinear Schroedinger Models in Fluid Dynamics: Rogue Waves and Vortex Filaments
协作瑞。
  • 批准号:
    1109017
  • 财政年份:
    2011
  • 资助金额:
    $ 9.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了