Finite Element Methods for Problems in Solid Mechanics
固体力学问题的有限元方法
基本信息
- 批准号:9704556
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal NO: DMS-9704556 Title: Finite Element Methods for Problems in Solid Mechanics P.I.: Richard S. Falk Abstract: The first main area of study of this project is the finite element approximation of plate and shell models. One objective is to develop methods which avoid the ``locking'' problem which leads, for standard approximations, to poor results for thin shells and plates. A second part of the project is to design and analyze effective multigrid preconditioners for least squares and mixed finite element approximations to second order elliptic boundary value problems. A third general area of study, using both computational and analytical techniques, is to understand the predictions of mathematical models which are concerned with stress driven instability of recrystallizable rods and films and with curvature driven surface diffusion. The last part of the project will attempt to develop finite element methods for first order linear hyperbolic systems and also for the approximation of simplified versions of the Einstein equations. Many problems in solid mechanics can be studied by using mathematical models. These models offer a cost-effective way to make quantitative predictions about how mechanical systems will change under various conditions, such as the application of external forces. In particular, they offer an alternative to the use of costly or difficult experiments. Typically, when realistic mathematical models are formulated, they are in terms of equations whose solutions, which represent physical quantities of interest to engineers and scientists, are not able to be determined analytically, i.e., in a simple form one can easily write down. However, by employing numerical methods, good approximations to the physical quantities which are described by the mathematical models may still be found. Typically, these numerical methods use high-speed computers to do the large number of calculations involved. This project is concerned with the design and analysis of numerical approximation schemes for a number of important mathematical models used in mechanics. Among the mathematical models considered are those for thin shells and films.
提案编号:DMS-9704556标题:固体力学问题的有限元方法P.I.: Richard S.福尔克 摘要: 该项目的第一个主要研究领域是板壳模型的有限元近似。 一个目标是开发方法,避免“锁定”的问题,导致标准的近似,薄壳和板的结果差。 该项目的第二部分是设计和分析有效的多重网格预处理最小二乘和混合有限元逼近二阶椭圆边值问题。 第三个一般的研究领域,使用计算和分析技术,是了解数学模型的预测,这是有关应力驱动的不稳定性的再结晶棒和膜,并与曲率驱动的表面扩散。 该项目的最后一部分将试图开发一阶线性双曲系统的有限元方法,也为简化版本的爱因斯坦方程的近似。 固体力学中的许多问题都可以用数学模型来研究。 这些模型提供了一种具有成本效益的方法,可以定量预测机械系统在各种条件下(例如施加外力)将如何变化。特别是,它们为使用昂贵或困难的实验提供了一种替代方法。 典型地,当实际的数学模型被公式化时,它们是根据其解(其表示工程师和科学家感兴趣的物理量)不能被解析地确定的方程,即,以一种简单的形式,人们可以很容易地写下来。 然而,通过采用数值方法,仍然可以找到数学模型所描述的物理量的良好近似值。通常,这些数值方法使用高速计算机来进行大量的计算。 这个项目是关于设计和分析的数值逼近方案的一些重要的数学模型中使用的力学。 其中考虑的数学模型是那些薄壳和薄膜。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Falk其他文献
Program for in vitro fertilization and embryo transfer at Columbia Hospital for Women, Washington, D.C.
- DOI:
10.1007/bf01129630 - 发表时间:
1984-03-01 - 期刊:
- 影响因子:2.700
- 作者:
Richard Falk;David E. Seyler - 通讯作者:
David E. Seyler
Mobilizing social science
- DOI:
10.1007/bf02694324 - 发表时间:
1977-05-01 - 期刊:
- 影响因子:1.400
- 作者:
Richard Falk - 通讯作者:
Richard Falk
The Kahan Commission Report on the Beirut Massacre
- DOI:
10.1007/bf00246008 - 发表时间:
1984-04-01 - 期刊:
- 影响因子:1.100
- 作者:
Richard Falk - 通讯作者:
Richard Falk
Ending the Death Dance
- DOI:
10.2307/3343226 - 发表时间:
2002-09-01 - 期刊:
- 影响因子:1.900
- 作者:
Richard Falk - 通讯作者:
Richard Falk
The Structure and process of international law : essays in legal philosophy, doctrine and theory
国际法的结构和过程:法哲学、学说和理论论文
- DOI:
10.2307/2202682 - 发表时间:
1985 - 期刊:
- 影响因子:4.3
- 作者:
Richard Falk - 通讯作者:
Richard Falk
Richard Falk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Falk', 18)}}的其他基金
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
- 批准号:
0910540 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
- 批准号:
0609755 - 财政年份:2006
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
- 批准号:
0308347 - 财政年份:2003
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Finite Element Approximation of Problems in Solid Mechanics
固体力学问题的有限元逼近
- 批准号:
0072480 - 财政年份:2000
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Finite Element Methods for Problems in Solid Mechanics
数学科学:固体力学问题的有限元方法
- 批准号:
9403552 - 财政年份:1994
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Finite Element Methods for Partial Differential Equations
数学科学:偏微分方程的有限元方法
- 批准号:
9106051 - 财政年份:1991
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Finite Element Methods for Partial Differential Equations
数学科学:偏微分方程的有限元方法
- 批准号:
8902120 - 财政年份:1989
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Finite Element Methods for Constrained and Ill-Posed Variational Problems
数学科学:约束和不适定变分问题的有限元方法
- 批准号:
8703354 - 财政年份:1987
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:
8505016 - 财政年份:1985
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Finite Element Methods for Constrained and Ill-Posed Variational Problems
数学科学:约束和不适定变分问题的有限元方法
- 批准号:
8402616 - 财政年份:1984
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
毛竹MLE(mariner-like element)转座酶催化机理研究
- 批准号:LZ19C160001
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
- 批准号:
2887026 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Structure-Preserving Hybrid Finite Element Methods
保结构混合有限元方法
- 批准号:
2208551 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208402 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208426 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
- 批准号:
RGPIN-2017-04581 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual