Finite Element Approximation of Problems in Solid Mechanics

固体力学问题的有限元逼近

基本信息

  • 批准号:
    0072480
  • 负责人:
  • 金额:
    $ 15.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

Dear Jong-Shi:I was very pleased to receive your email saying that you plan to recommendfunding of my NSF proposal as a 36 month standard award of $150,710.As you requested, here is an abstract of the project. Please let me knowif this is acceptable.Regards,Rick FalkAbstract: Finite Element Approximation of Problems in Solid MechanicsThe finite element approximation of mathematical models of thin plates andshells is studied. For the Reissner-Mindlin plate model, there are manyproven "locking-free" methods (i.e., no accuracy loss for smaller thickness)using triangular and rectangular elements. It is proposed to analyzequadrilateral elements for this problem and study important but unresolvedissues about these elements in more general contexts. In addition to theshear locking which causes problems in the approximation of plate models,shells also suffer from the problem of membrane locking. The goal is toimprove on the shell elements so far proposed and provide a rigorous analysisof convergence. Variational methods used previously for the derivation andanalysis of plate models will be extended to the derivation and analysis ofshell models. Discontinuous Galerkin finite element methods are promisingcandidates for a robust approximation method for both convection-dominated anddiffusion-dominated convection-diffusion problems. Further analysis isproposed to demonstrate their effectiveness more conclusively. Computationaland analytical techniques are proposed to understand the predictions of 2-Dmathematical models concerned with stress driven instability, expanding onprevious grant work done on a simpler 1-D model.This proposal is concerned with the use of mathematical models to studyseveral problems in solid mechanics. The use of mathematical models offers acost-effective way to make quantitative predictions about how mechanicalsystems will change when external forces are applied and serves as analternative to the use of costly or difficult experiments. Typically, whenrealistic mathematical models are formulated, they are in terms of equationswhose solutions, which represent physical quantities of interest to engineersand scientists, are not able to be determined analytically, i.e., in a simpleform one can easily write down. However, by employing numerical methods, goodapproximations to the physical quantities which are described by themathematical models may still be found. Typically, high performance computingis needed to do the large number of calculations involved. This project isconcerned with the design and analysis of numerical approximation schemes fora number of important mathematical models used in mechanics. These includemodels of elastic plates and shells (used for example to design the roof of abuilding to avoid collapse) and models of nano-scale solid crystals (whichcan be used to study instabilities in certain materials).
亲爱的Jong-Shi:我很高兴收到您的邮件,说您计划为我的NSF提案推荐一个36个月的标准奖金150,710美元。按你的要求,这是项目摘要。请告诉我这是否可以接受。摘要:固体力学问题的有限元逼近研究了薄板壳数学模型的有限元逼近。对于Reissner-Mindlin板模型,有许多经过验证的“无锁定”方法(即,对于较小厚度没有精度损失)使用三角形和矩形单元。我们建议分析这个问题的等边元素,并在更一般的背景下研究这些元素的重要但尚未解决的问题。除了导致板模型近似问题的剪切锁定外,壳体还遭受膜锁定问题。目标是改进目前提出的壳单元,并提供一个严格的收敛分析。以前用于板模型推导和分析的变分方法将扩展到壳模型的推导和分析。不连续Galerkin有限元方法对于对流主导和扩散主导的对流扩散问题都是一种有希望的鲁棒逼近方法。提出进一步的分析,以更确切地证明其有效性。提出了计算和分析技术来理解与应力驱动不稳定性有关的二维数学模型的预测,扩展了以前在更简单的一维模型上完成的资助工作。这个建议是关于使用数学模型来研究固体力学中的几个问题。数学模型的使用提供了一种经济有效的方法来定量预测当施加外力时机械系统将如何变化,并作为使用昂贵或困难的实验的替代方法。通常,当现实的数学模型被公式化时,它们是用方程来表示的,这些方程的解代表了工程师和科学家感兴趣的物理量,而这些解是无法解析地确定的,也就是说,用一种简单的形式可以很容易地写下来。然而,通过采用数值方法,仍然可以找到数学模型所描述的物理量的良好近似值。通常,需要高性能计算来完成大量的计算。这个项目是关于设计和分析数值逼近方案的一些重要的数学模型用于力学。这些模型包括弹性板和壳的模型(例如用于设计建筑物的屋顶以避免倒塌)和纳米级固体晶体的模型(可用于研究某些材料的不稳定性)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Falk其他文献

Program for in vitro fertilization and embryo transfer at Columbia Hospital for Women, Washington, D.C.
Mobilizing social science
  • DOI:
    10.1007/bf02694324
  • 发表时间:
    1977-05-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Richard Falk
  • 通讯作者:
    Richard Falk
The Kahan Commission Report on the Beirut Massacre
  • DOI:
    10.1007/bf00246008
  • 发表时间:
    1984-04-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Richard Falk
  • 通讯作者:
    Richard Falk
Ending the Death Dance
The Structure and process of international law : essays in legal philosophy, doctrine and theory
国际法的结构和过程:法哲学、学说和理论论文

Richard Falk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Falk', 18)}}的其他基金

Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
  • 批准号:
    0910540
  • 财政年份:
    2009
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
  • 批准号:
    0609755
  • 财政年份:
    2006
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
  • 批准号:
    0308347
  • 财政年份:
    2003
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
Finite Element Methods for Problems in Solid Mechanics
固体力学问题的有限元方法
  • 批准号:
    9704556
  • 财政年份:
    1997
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Finite Element Methods for Problems in Solid Mechanics
数学科学:固体力学问题的有限元方法
  • 批准号:
    9403552
  • 财政年份:
    1994
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Finite Element Methods for Partial Differential Equations
数学科学:偏微分方程的有限元方法
  • 批准号:
    9106051
  • 财政年份:
    1991
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Finite Element Methods for Partial Differential Equations
数学科学:偏微分方程的有限元方法
  • 批准号:
    8902120
  • 财政年份:
    1989
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Finite Element Methods for Constrained and Ill-Posed Variational Problems
数学科学:约束和不适定变分问题的有限元方法
  • 批准号:
    8703354
  • 财政年份:
    1987
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    8505016
  • 财政年份:
    1985
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Finite Element Methods for Constrained and Ill-Posed Variational Problems
数学科学:约束和不适定变分问题的有限元方法
  • 批准号:
    8402616
  • 财政年份:
    1984
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant

相似国自然基金

毛竹MLE(mariner-like element)转座酶催化机理研究
  • 批准号:
    LZ19C160001
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2017
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2016
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2015
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2014
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
  • 批准号:
    0910540
  • 财政年份:
    2009
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
A posteriori analysis of the finite element approximation for nonlinear parabolic problems
非线性抛物线问题有限元近似的后验分析
  • 批准号:
    18740046
  • 财政年份:
    2006
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
  • 批准号:
    0609755
  • 财政年份:
    2006
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
NONLINEAR FINITE ELEMENT APPROXIMATION OF FIRST-ORDER PDE'S IN L1
L1 中一阶偏微分方程的非线性有限元逼近
  • 批准号:
    0510650
  • 财政年份:
    2005
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
Finite Element Approximation of Partial Differential Equations
偏微分方程的有限元逼近
  • 批准号:
    0308347
  • 财政年份:
    2003
  • 资助金额:
    $ 15.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了