Surgery L-Groups, Algebraic K-Groups and Rigidity of Classical Aspherical Manifolds

外科 L 群、代数 K 群和经典非球面流形的刚性

基本信息

  • 批准号:
    9704765
  • 负责人:
  • 金额:
    $ 12.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9704765 Jones The Borel Conjecture states that any aspherical closed manifold should be topologically determined by its fundamental group. This research project will provide a new geometric tool that will enable the investigator to verify this conjecture for any aspherical closed manifold whose fundamental group is isomorphic to the fundamental group of a non-positively curved Riemannian manifold. The geometric tool consists of a generalization of the geometric collapsing theory developed by the geometers Cheeger-Fukaya-Gromov and others. In this project L. E. Jones (in collaboration with F. T. Farrell) will develop a collapsing theory for foliated Riemannian manifolds. A "two-dimensional manifold" is a "space" that looks exactly like the Euclidean plane to an observer near any point in the space, but which when observed as a whole may not be Euclidean space at all. For example the earth's surface looks like a flat plane if we are actually on its surface, but when observed from space, it is seen to be a sphere. Two-dimensional manifolds were already well understood by mathematicians of the 19th century. There are also 3-dimensional manifolds, 4-dimensional manifolds, etc., manifolds that are less well understood; in fact, the mathematician's quest to understand higher dimensional manifolds has motivated much of the topological research of the 20th century. One way to investigate the nature of a manifold is to focus on an associated algebraic object (that is much easier to understand) called its "fundamental group." A famous mathematical conjecture states that for a special class of higher dimensional manifolds (called "aspherical manifolds"), the fundamental group should act like a genetic code for the manifold, revealing all of its inner topological secrets. The aim of this project is to verify this conjecture. ***
小行星9704765 波莱尔猜想指出,任何非球面闭流形都应该由它的基本群拓扑决定。 该研究项目将提供一种新的几何工具,使研究人员能够验证任何非球面闭流形的基本群同构于非正弯曲黎曼流形的基本群的猜想。 几何工具包括一个推广的几何崩溃理论开发的几何Cheeger-Gracaya-Gromov和其他。 在这个项目中,L。E.琼斯(与F。T. Farrell)将发展一个关于叶状黎曼流形的坍缩理论。 一个“二维流形”是一个“空间”,它看起来完全像欧氏平面的观察者在任何一点附近的空间,但它作为一个整体观察时可能根本不是欧氏空间。 例如,如果我们实际上在地球表面上,地球表面看起来像一个平面,但当从太空观察时,它被视为一个球体。 世纪的数学家们已经很好地理解了二维流形。 也有三维流形,四维流形,等等,事实上,数学家对高维流形的探索激发了世纪的许多拓扑研究。 研究流形性质的一种方法是关注一个相关的代数对象(更容易理解),称为“基本群”。一个著名的数学猜想指出,对于一类特殊的高维流形(称为“非球面流形”),基本群应该像流形的遗传密码一样,揭示其所有内在的拓扑秘密。 这个项目的目的就是验证这个猜想。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lowell Jones其他文献

Clinical and nasal biopsy response to treatment of perennial rhinitis.
对常年性鼻炎治疗的临床和鼻活检反应。
Self-sensing control as applied to a PZT stack actuator used as a micropositioner
自传感控制应用于用作微定位器的 PZT 堆栈执行器
  • DOI:
    10.1088/0964-1726/3/2/010
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Lowell Jones;Ephrahim;Waitest
  • 通讯作者:
    Waitest

Lowell Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lowell Jones', 18)}}的其他基金

SBIR Phase II: Energy Saving Solenoid Valve
SBIR第二期:节能电磁阀
  • 批准号:
    1330950
  • 财政年份:
    2013
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
Problems in higher dimensional topology
高维拓扑中的问题
  • 批准号:
    0604772
  • 财政年份:
    2006
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
Problems in Differential and Algebraic Topology
微分和代数拓扑问题
  • 批准号:
    0306616
  • 财政年份:
    2003
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
The Isomorphism Conjectures for surgery L-groups, algebraic K-groups, and stable pseudo-isotopy spaces
手术 L 群、代数 K 群和稳定赝同位素空间的同构猜想
  • 批准号:
    0072349
  • 财政年份:
    2000
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Continuing Grant

相似海外基金

Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
  • 批准号:
    23K12951
  • 财政年份:
    2023
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
  • 批准号:
    2305231
  • 财政年份:
    2023
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
Algebraic groups and Lie algebras
代数群和李代数
  • 批准号:
    2883177
  • 财政年份:
    2023
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Studentship
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MPS-Ascend: The C*-Algebraic Mackey Bijection for Real Reductive Groups
MPS-Ascend:实数约简群的 C*-代数 Mackey 双射
  • 批准号:
    2213097
  • 财政年份:
    2022
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Fellowship Award
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
  • 批准号:
    2201005
  • 财政年份:
    2022
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
  • 批准号:
    RGPIN-2016-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2022
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Discovery Grants Program - Individual
Canonical dimension and actions of finite groups on algebraic varieties
代数簇上有限群的规范维数和作用
  • 批准号:
    498240045
  • 财政年份:
    2022
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Heisenberg Grants
Complete reducibility in algebraic groups
代数群的完全可约性
  • 批准号:
    EP/W000466/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了