The Isomorphism Conjectures for surgery L-groups, algebraic K-groups, and stable pseudo-isotopy spaces
手术 L 群、代数 K 群和稳定赝同位素空间的同构猜想
基本信息
- 批准号:0072349
- 负责人:
- 金额:$ 14.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-15 至 2004-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0072349Lowell E. JonesLet G be an arbitrary discrete group. Jones and Farrell have conjectured ("Isomorphism Conjectures") that the surgery L-groups of G, L(G), and the algebraic K-groups of the integral group ring Z(G), K(Z(G)), should be computable in a simple way from the collections of all the groups L(H), K(Z(H)) where H is any cyclic by finite subgroup of G. The truth of these conjecutures would imply rigidity results for aspherical manifolds ("Borel Conjecture") and also would yield much information about the spaces of homeomorphisms and diffeomorphisms of aspherical manifolds. Jones,in collaboration with Farrell, is trying to verify the isomorphism conjectures for any group G which acts properly discontinuously via isometries on a complete Riemannian manifold having non-positive curvature. Modern day geometers and topologists are concerned with "spaces" and what they look like. The surface of a donut, the sphere and the plane are examples of 2-dimensional spaces which are all different from one another from both the perspective of geometry and topology. One way that topologists study spaces (not just of dimension 2 but ofhigher dimension also) is to associate to each space some algebraic gadgets. It is conjectured that for many interesting spaces these algebraic gadgets act like a "genetic code" for the space, in that they tell us most everything we want to know about the space. Thus there are two fundamental problems here: to verify this "genetic code conjecture"; and to decifer the genetic code for the spaces which are of interest to geometers and topologists.
DMS-0072349 Lowell E.设G是任意离散群. Jones和Farrell证明了(“同构猜想”)G的外科L-群,L(G),整群环Z(G),K(Z(G))的代数K-群应该可以用一种简单的方法从所有群L(H),K(Z(H))的集合中计算出来,其中H是G的任意有限循环子群。 这些猜想的真实性将意味着非球面流形的刚性结果(“波莱尔猜想”),也将产生许多关于非球面流形的同胚和复同胚空间的信息。 琼斯,在合作与法雷尔,正试图验证同构aesthetures为任何一组G的行为适当不连续通过isometries上一个完整的黎曼流形具有非正曲率。 现代几何学家和拓扑学家关心的是“空间”和它们的样子。 圆环面、球面和平面都是二维空间的例子,从几何和拓扑的角度来看,它们都是彼此不同的。 拓扑学家研究空间的一种方法(不仅是二维空间,也是高维空间)是将每个空间与一些代数小工具联系起来。 它是明确的,对于许多有趣的空间,这些代数小工具就像空间的“遗传密码”,因为它们告诉我们大多数我们想知道的关于空间的一切。 因此,这里有两个基本问题:验证这个“遗传密码猜想”;和decifer的遗传密码的空间感兴趣的几何学家和拓扑学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lowell Jones其他文献
Clinical and nasal biopsy response to treatment of perennial rhinitis.
对常年性鼻炎治疗的临床和鼻活检反应。
- DOI:
- 发表时间:
1980 - 期刊:
- 影响因子:14.2
- 作者:
Sheldon L. Spector;Gerald M. English;Lowell Jones - 通讯作者:
Lowell Jones
Self-sensing control as applied to a PZT stack actuator used as a micropositioner
自传感控制应用于用作微定位器的 PZT 堆栈执行器
- DOI:
10.1088/0964-1726/3/2/010 - 发表时间:
1994 - 期刊:
- 影响因子:4.1
- 作者:
Lowell Jones;Ephrahim;Waitest - 通讯作者:
Waitest
Lowell Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lowell Jones', 18)}}的其他基金
SBIR Phase II: Energy Saving Solenoid Valve
SBIR第二期:节能电磁阀
- 批准号:
1330950 - 财政年份:2013
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Problems in higher dimensional topology
高维拓扑中的问题
- 批准号:
0604772 - 财政年份:2006
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Problems in Differential and Algebraic Topology
微分和代数拓扑问题
- 批准号:
0306616 - 财政年份:2003
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
Surgery L-Groups, Algebraic K-Groups and Rigidity of Classical Aspherical Manifolds
外科 L 群、代数 K 群和经典非球面流形的刚性
- 批准号:
9704765 - 财政年份:1997
- 资助金额:
$ 14.72万 - 项目类别:
Continuing Grant
相似海外基金
LEAP-MPS: Two Conjectures in Mathematical Relativity
LEAP-MPS:数学相对论中的两个猜想
- 批准号:
2316965 - 财政年份:2023
- 资助金额:
$ 14.72万 - 项目类别:
Standard Grant
The refined Arthur--Langlands conjectures beyond the supercuspidal case
超越超尖角情况的精致亚瑟-朗兰兹猜想
- 批准号:
2301507 - 财政年份:2023
- 资助金额:
$ 14.72万 - 项目类别:
Continuing Grant
Combinatorical properties of special symmetic polynomials: results and conjectures
特殊对称多项式的组合性质:结果和猜想
- 批准号:
575062-2022 - 财政年份:2022
- 资助金额:
$ 14.72万 - 项目类别:
University Undergraduate Student Research Awards
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
- 批准号:
559668-2021 - 财政年份:2022
- 资助金额:
$ 14.72万 - 项目类别:
Postgraduate Scholarships - Doctoral
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
- 批准号:
DGECR-2022-00432 - 财政年份:2022
- 资助金额:
$ 14.72万 - 项目类别:
Discovery Launch Supplement
Main Conjectures for Families of Automorphic Forms
自守形式族的主要猜想
- 批准号:
RGPIN-2018-04392 - 财政年份:2022
- 资助金额:
$ 14.72万 - 项目类别:
Discovery Grants Program - Individual
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
- 批准号:
RGPIN-2022-03093 - 财政年份:2022
- 资助金额:
$ 14.72万 - 项目类别:
Discovery Grants Program - Individual
Main Conjectures for Families of Automorphic Forms
自守形式族的主要猜想
- 批准号:
RGPIN-2018-04392 - 财政年份:2021
- 资助金额:
$ 14.72万 - 项目类别:
Discovery Grants Program - Individual
Selmer groups, arithmetic statistics, and parity conjectures.
Selmer 群、算术统计和宇称猜想。
- 批准号:
EP/V006541/1 - 财政年份:2021
- 资助金额:
$ 14.72万 - 项目类别:
Fellowship
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
- 批准号:
559668-2021 - 财政年份:2021
- 资助金额:
$ 14.72万 - 项目类别:
Postgraduate Scholarships - Doctoral