Problems in higher dimensional topology

高维拓扑中的问题

基本信息

  • 批准号:
    0604772
  • 负责人:
  • 金额:
    $ 10.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

One of the several subjects which this project will focus on is a(possibly) new type of invariant for finite group actions on toplogical spaces. Let G denote a finite p-group, for some prime integer p, and letF denote a field of characteristic p. Any cellular group actionh:GxK --- K by G on a finite CW complex K gives rise to a chain complexC(*) over the group ring F(G). An "elemental chain subcomplex" of C(*)is any chain subcomplex E(*) such that for some integer i the boundarymap E(i) --- E(i-1) is an isomorphism between principle F(G)-modules, and E(j)=0 if j is not equal to i,i-1. A chain subcomplex D(*) of C(*) is called a "minimal core" for C(*) if C(*) is the direct sumof D(*) and some elemental chain subcomplexes of C(*), and if D(*) does not have any elemental chain complex direct summands. In recent work Jones has shown that a minimal core always exists and that its isomorphism type depends only on the equivariant homotopy type of the group action h. In future work Jones plans to focus on the classification (up to isomorhism) of all minimal cores over the group ringF(G). In toplogy (that field of mathematics to which this project is most closely associated) one studies the structure of spaces in a veryloose manner. Examples of the spaces which topologists study occur everywhere ---- from theortical physics to objects occuring in everydaylife such as a ball or donut. From the point of view of toplologyall balls are the same (they have the same shape when considered asabstract toplological spaces); likewise any two donuts have the same"shape"; however a ball has a different "shape" than a donut (sincea donut has a hole but no ball has a hole in it). The main object of topology is the determination of when two differenet spaces have the same "shape" (such spaces are said to be "topologically equivalent").For well over one hundered years an important approach to this problemhas been to associate algebraic objects (such as numbers, groups, rings,etc.) to each space in such a way that if two different spaces are topologically equivalent then all their known associated algebraic objects must be equal. This approach has been very successful because the associatedalgebraic objects are generally much easier to understand then are the spaces themselves. Jones has recently discovered what seems to be a newtype of algebraic object associated to spaces. Currently he is trying calculate this new algebraic object and to understand how it is related to the many older well known algebraic objects associated to spaces.
其中几个主题,这一项目将集中在一个(可能)新类型的不变量有限群行动的拓扑空间。 设G表示有限p-群,对某个素数p,F表示特征为p的域,G作用于有限CW复形K上的任何胞腔群h:GxK --- K都在群环F(G)上产生链复形C(*). C(*)的一个“元素链子复形”是任意链子复形E(*),使得对于某个整数i,边界映射E(i)- E(i-1)是主F(G)-模之间的同构,并且如果j不等于i,i-1,则E(j)=0。 C(*)的一个链子复形D(*)称为C(*)的“极小核”,如果C(*)是D(*)与C(*)的一些元素链子复形的直和,并且如果D(*)没有任何元素链复形的直和项. 在最近的工作琼斯表明,一个最小的核心总是存在的,它的同构类型只取决于等变同伦类型的群作用h。 在未来的工作中,琼斯计划把重点放在分类(直到同构)的所有最小的核心在组环F(G)。在拓扑学(与本课题联系最紧密的数学领域)中,人们以一种非常松散的方式研究空间的结构。 拓扑学家研究的空间的例子无处不在-从理论物理到日常生活中发生的物体,如球或甜甜圈。 从拓扑学的角度来看,所有的球都是相同的(当被认为是抽象的拓扑空间时,它们具有相同的形状);同样,任何两个甜甜圈都具有相同的“形状”;然而,球的“形状”不同于甜甜圈(因为甜甜圈有一个洞,但没有球有一个洞)。 拓扑学的主要目的是确定两个拓扑网空间何时具有相同的“形状”(这样的空间被称为“拓扑等价”)。一百多年来,解决这个问题的一个重要方法是将代数对象(如数、群、环等)联系起来。以这样的方式,每个空间,如果两个不同的空间是拓扑等价的,那么所有已知的相关代数对象必须是平等的。 这种方法非常成功,因为相关联的代数对象通常比空间本身更容易理解。 琼斯最近发现了一种与空间有关的新型代数对象。 目前,他正试图计算这个新的代数对象,并了解它是如何与许多旧的众所周知的代数对象相关联的空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lowell Jones其他文献

Clinical and nasal biopsy response to treatment of perennial rhinitis.
对常年性鼻炎治疗的临床和鼻活检反应。
Self-sensing control as applied to a PZT stack actuator used as a micropositioner
自传感控制应用于用作微定位器的 PZT 堆栈执行器
  • DOI:
    10.1088/0964-1726/3/2/010
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Lowell Jones;Ephrahim;Waitest
  • 通讯作者:
    Waitest

Lowell Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lowell Jones', 18)}}的其他基金

SBIR Phase II: Energy Saving Solenoid Valve
SBIR第二期:节能电磁阀
  • 批准号:
    1330950
  • 财政年份:
    2013
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Standard Grant
Problems in Differential and Algebraic Topology
微分和代数拓扑问题
  • 批准号:
    0306616
  • 财政年份:
    2003
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Standard Grant
The Isomorphism Conjectures for surgery L-groups, algebraic K-groups, and stable pseudo-isotopy spaces
手术 L 群、代数 K 群和稳定赝同位素空间的同构猜想
  • 批准号:
    0072349
  • 财政年份:
    2000
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Continuing Grant
Surgery L-Groups, Algebraic K-Groups and Rigidity of Classical Aspherical Manifolds
外科 L 群、代数 K 群和经典非球面流形的刚性
  • 批准号:
    9704765
  • 财政年份:
    1997
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Continuing Grant

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
  • 批准号:
    23K03110
  • 财政年份:
    2023
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on cancellation problems for higher dimensional affine varieties
高维仿射簇抵消问题研究
  • 批准号:
    20K22317
  • 财政年份:
    2020
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Connection problems of hypergeometric functions from the view point of higher dimensional Erdelyi cycles and their intersection numbers
高维Erdelyi循环及其交数角度的超几何函数连接问题
  • 批准号:
    19K03517
  • 财政年份:
    2019
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2017
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in Higher Dimensional Algebraic Geometry
高维代数几何问题
  • 批准号:
    1502236
  • 财政年份:
    2015
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Standard Grant
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Discovery Grants Program - Individual
Various problems related to the classification in higher dimensional birational geometry
与高维双有理几何分类相关的各种问题
  • 批准号:
    25287005
  • 财政年份:
    2013
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EXAHD - An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond
EXAHD - 用于等离子体物理及其他领域高维问题的 Exa 可扩展两级稀疏网格方法
  • 批准号:
    230862074
  • 财政年份:
    2012
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Priority Programmes
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
  • 批准号:
    229809-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了