Issues in the Foundations of Mathematics
数学基础问题
基本信息
- 批准号:9704918
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Friedman proposes to continue his work establishing the independence from the usual axioms of mathematics (i.e., Zermelo-Frankel set theory with the axiom of choice) of some simple and basic finite combinatorial statements. Recent work of the PI discusses versions that assert that in every collection of finite functions satisfying a certain coherence condition, some element has a very strong combinatorial property related to Ramsey theory. He proposes to relate these examples to the fast growing numerical functions associated with the relevant large cardinal axioms. In addition, he has discovered a family of transfer principles which establish a new kind of formal relationship between finite set theory and transfinite set theory. In particular, he has shown that certain large cardinal axioms are equivalent to transfer principles asserting that any statement of a simple kind that is true about the functions on the natural numbers is true about the functions on the ordinals. The PI proposes to extend this work to stronger large cardinal axioms, and also to formulate and investigate related transfer principles from the hereditarily finite sets to arbitrary sets. An independent statement is a mathematical assertion which cannot be proved true or false within the usual axioms for mathematics. The previously known independent statements have certain unsatisfactory features which make them very atypical of normal everyday mathematical assertions. Friedman has discovered some examples which are much closer to normal mathematics in terms of both concreteness and naturality and proposes to continue the search for more concrete and natural examples. His examples also have the positive feature that the assertions can be proved using certain well studied new axioms for mathematics (so called large cardinal axioms), but not otherwise. The PI also has established an entirely new way in which these new axioms arise - they can be thought of as the natural extension of known facts in the context of the inte gers. He proposes to extend this new way of looking at these new axioms for mathematics to yet stronger new axioms for mathematics.
弗里德曼建议继续他的工作,建立一些简单和基本的有限组合语句的独立性,从通常的数学公理(即Zermelo-Frankel集合论与选择公理)。PI最近的工作讨论了断言在满足一定相干条件的有限函数的每一个集合中,某些元素具有与拉姆齐理论相关的很强的组合性质的版本。他建议将这些例子与与相关大基本公理相关的快速增长的数值函数联系起来。此外,他还发现了一组传递原理,在有限集合论和超有限集合论之间建立了一种新的形式关系。特别是,他证明了某些大基数公理等价于传递原理,断言任何关于自然数上的函数为真的简单类陈述对于序数上的函数也为真。作者建议将这一工作推广到更强的大基数公理,并提出和研究从遗传有限集到任意集的相关迁移原理。独立陈述是一种不能在通常的数学公理内证明为真或假的数学断言。先前已知的独立陈述具有某些不令人满意的特征,这使它们与正常的日常数学断言非常不典型。弗里德曼已经发现了一些在具体性和自然性方面更接近普通数学的例子,并建议继续寻找更具体和自然的例子。他的例子也有积极的特征,即断言可以用某些研究得很好的数学新公理(所谓的大基数公理)来证明,但不能用其他方法。PI还为这些新公理的产生建立了一种全新的方式——它们可以被认为是已知事实在整数背景下的自然延伸。他建议将这种看待这些数学新公理的新方法扩展到更强大的数学新公理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harvey Friedman其他文献
Sinus pause in association with Lyme carditis.
窦性暂停与莱姆性心脏炎有关。
- DOI:
10.14503/thij-14-4126 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
A. Oktay;Samer R. Dibs;Harvey Friedman - 通讯作者:
Harvey Friedman
The disjunction property implies the numerical existence property.
析取性质隐含着数值存在性质。
- DOI:
10.1073/pnas.72.8.2877 - 发表时间:
1975 - 期刊:
- 影响因子:11.1
- 作者:
Harvey Friedman - 通讯作者:
Harvey Friedman
Medical Students in Developing Countries
- DOI:
10.1007/s11606-011-1744-3 - 发表时间:
2011-05-20 - 期刊:
- 影响因子:4.200
- 作者:
Jessica Merlin;Gail Morrison;Stephen Gluckman;Gregg Lipschik;Darren R. Linkin;Sarah Lyon;Elizabeth O’Grady;Heather Calvert;Harvey Friedman - 通讯作者:
Harvey Friedman
769 A CYTOMEGALOVIRUS VACCINE TRIAL IN RENAL TRANSPLANT CANDIDATES
- DOI:
10.1203/00006450-197804001-00774 - 发表时间:
1978-04-01 - 期刊:
- 影响因子:3.100
- 作者:
John P Glazer;Harvey Friedman;Robert Grossman;Clyde Barker;Stuart E Starr;Stanley A Plotkin - 通讯作者:
Stanley A Plotkin
Human brain in tissue culture
组织培养中的人脑
- DOI:
- 发表时间:
1975 - 期刊:
- 影响因子:12.7
- 作者:
Z. Wróblewska;M. Devlin;D. Gilden;D. Santoli;Harvey Friedman;H. Koprowski - 通讯作者:
H. Koprowski
Harvey Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harvey Friedman', 18)}}的其他基金
Collaborative Research: Theoretical Support for Mechanized Proof Assistants
协作研究:机械化证明助手的理论支持
- 批准号:
0401265 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in the Foundations of Mathematics
数学科学:数学基础主题
- 批准号:
8902765 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Interdisciplinary Conference On Randomness to be held April 12-16, 1988, Columbus, Ohio
数学科学:随机性跨学科会议将于 1988 年 4 月 12-16 日在俄亥俄州哥伦布市举行
- 批准号:
8722851 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Interdisciplinary Conference on Axiomatic Systems, December 15-18, 1988; Columbus, Ohio
数学科学:公理系统跨学科会议,1988 年 12 月 15-18 日;
- 批准号:
8816125 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topics in the Foundations of Mathematics
数学科学:数学基础主题
- 批准号:
8601285 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Alan T. Waterman Award
数学科学:艾伦·T·沃特曼奖
- 批准号:
8419353 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Investigations into the Necessary Use of Abstract Set Theory, and Constructive Aspects of Algebra
数学科学:对抽象集合论的必要使用和代数的构造性方面的调查
- 批准号:
8102681 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Continuing grant
Investigations Into the Use of Higher Types, Set Theoretic Undefinability, and Intuitionistic Semantics
对高级类型、集合论不可定义性和直觉语义的使用的调查
- 批准号:
7802558 - 财政年份:1978
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Foundations of Computational Mathematics Conference – FoCM 2023
计算数学基础会议 – FoCM 2023
- 批准号:
2232812 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Foundations of Computational Mathematics
计算数学基础会议
- 批准号:
2001711 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on the Foundations of Computational Mathematics 2017
2017年计算数学基础会议
- 批准号:
1723153 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Turning Points in the Mathematics of Space: a Formalisation of Alternative Foundations for Differential Geometry
空间数学的转折点:微分几何替代基础的形式化
- 批准号:
1931617 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
History of the foundations of mathematics via sociological and inforrmatiics methods
通过社会学和信息学方法了解数学基础的历史
- 批准号:
16K12799 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The Categorical Unification of Foundations of Mathematics and of Quantum Physics, and its Applications to Categorical Duality in Machine Learning
数学和量子物理基础的范畴统一及其在机器学习中范畴对偶性的应用
- 批准号:
15H06313 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Conference on the Foundations of Computational Mathematics 2014
2014年计算数学基础会议
- 批准号:
1418833 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on the Foundations of Computational Mathematics
计算数学基础会议
- 批准号:
1068800 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Paraconsistent Foundations of Mathematics
次相容数学基础
- 批准号:
DP1094962 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Projects