Turning Points in the Mathematics of Space: a Formalisation of Alternative Foundations for Differential Geometry
空间数学的转折点:微分几何替代基础的形式化
基本信息
- 批准号:1931617
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the early 19th century, it was found that Euclidean geometry was not only possible geometry. This was a revolutionary discovery and caused mathematicians to wonder what kind of space it is that we live in. All they knew for certain was that space is locally Euclidean. This led Riemann to conceive of the notion of a manifold. However, this concept was initially vague, and, after reinterpretations by mathematicians such as Poincarz and Weyl, it was only stated in its modern form by Hassler Whitney in 1936. This project aims to formalise the mathematics of space, i.e. differential geometry, with a particular focus on exploring alternative foundations. Specifically, we will formalise geometric algebra, which is a historically-prior concept to the more common idea of vector spaces, and is a more expressive and more powerful system. We also plan to formalise the nonstandard extension of geometric algebra, which should give rise to objects with unusual properties e.g. infinitely large and small multivectors. We intend to formalise a general notion of manifolds within the context of geometric algebra. We will use the interactive theorem prover Isabelle which already has the required notions from algebra and topology as well as tools such as locales which allow general definition of structures which can later be instantiated to interesting special cases.With this formalisation we will obtain an improved understanding and alternative interpretation of the concepts involved in the mathematics of space along with deeper appreciation of the most significant turning point in history of mathematics, which gave rise to many areas of present day mathematics research, including algebraic geometry, differential geometry and topology. The relevant mathematical tools are also exactly those used in physics, e.g. in describing general relativity, so a formalisation and exploration of alternative foundations for these tools could lead to new insights.
在19世纪早期,人们发现欧几里得几何不仅是可能的几何。这是一个革命性的发现,让数学家们想知道我们生活在什么样的空间里。他们唯一能确定的就是太空是局部欧几里得的。这促使黎曼构思了流形的概念。然而,这个概念最初是模糊的,经过Poincarz和Weyl等数学家的重新解释,直到1936年Hassler Whitney才用现代形式提出了这个概念。该项目旨在使空间数学,即微分几何正规化,特别注重探索替代基础。具体地说,我们将形式化几何代数,这是一个历史上优先于更常见的向量空间概念的概念,是一个更具表现力和更强大的系统。我们还计划将几何代数的非标准扩展正式化,这应该会产生具有不寻常性质的对象,例如无限大和小的多重向量。我们打算在几何代数的背景下形式化流形的一般概念。我们将使用交互式定理证明器Isabelle,它已经拥有了代数和拓扑学中所需的概念,以及诸如Locale之类的工具,这些工具允许对结构的一般定义,这些结构稍后可以实例化到有趣的特殊情况。通过这种形式化,我们将获得对空间数学中涉及的概念的更好的理解和另一种解释,以及对数学史上最重要的转折点的更深层次的理解,这引发了当今数学研究的许多领域,包括代数几何、微分几何和拓扑学。相关的数学工具也完全是物理学中使用的工具,例如在描述广义相对论时使用的工具,因此对这些工具的替代基础的形式化和探索可能会带来新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Multidisciplinary analysis of financial reference points and wellbeing
财务参考点和福祉的多学科分析
- 批准号:
DP240101927 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
- 批准号:
2328407 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Chimella application for Sap points accreditation
Chimella 申请 Sap 积分认证
- 批准号:
10106576 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Exploring Tipping Points and Their Impacts Using Earth System Models (TipESM)
使用地球系统模型探索临界点及其影响 (TipESM)
- 批准号:
10090271 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
TipESM: Exploring Tipping Points and Their Impacts Using Earth System Models
TipESM:使用地球系统模型探索临界点及其影响
- 批准号:
10103098 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
- 批准号:
10090795 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Optic: A solution to Events Related Terrorism and Event Security Pain Points
Optic:事件相关恐怖主义和事件安全痛点的解决方案
- 批准号:
10084791 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Development of a novel therapeutic drug targeting both MDM4 and PKC, critical points in uveal malignant melanoma
开发针对葡萄膜恶性黑色素瘤关键点 MDM4 和 PKC 的新型治疗药物
- 批准号:
23K09020 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Social Tipping Points and Norm Change in Large-scale Laboratory Experiments
大规模实验室实验中的社会临界点和规范变化
- 批准号:
2242443 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
First high-resolution studies of photospheric bright points as heating drivers: early DKIST science
首次对光球亮点作为加热驱动因素的高分辨率研究:早期 DKIST 科学
- 批准号:
2308075 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant