Research in the Foundations of Mathematics
数学基础研究
基本信息
- 批准号:0245349
- 负责人:
- 金额:$ 21.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award: DMS-0245349Principal Investigator: Harvey M. FriedmanFriedman proposes to continue his efforts into extending thescope of the incompleteness phenomena. Under prior NSF support,Friedman has discovered a new mathematical theory which seeks toanalyze the Boolean relations that hold between sets and theirimages under functions of several variables. This new Booleanrelation theory seeks to analyze statements of the form "for allfunctions of a certain kind, there exist sets of a certain kind,such that a given Boolean relation holds among the sets and theirimages under the functions". Under prior NSF support, Friedmandiscovered a "singular" statement of a particularly simple formin Boolean relation theory that can be proved only by goingbeyond the usual axioms for mathematics. Friedman has consideredall 6561 statements of the same simple form and showed that allcan be proved or refuted using weak axioms, with the soleexception (up to symmetry) of the "singular" statement. Friedmanproposes to develop Boolean relation theory in severaldirections, including expanding the set of 6561 statements, andshifting to many diverse mathematical contexts.By the early part of the 20th century, the standard axioms andrules of mathematics had been established - the so called ZermeloFrankel axioms of set theory (ZFC). In the 1930's, Kurt Godelstunned the mathematical world with his incompleteness theoremsthat showed that any systematization such as ZFC isincomplete. I.e., there will always remain sentences that canneither be proved nor refuted within that systematization. Thisis normally referred to as the incompleteness phenomenom. Godel'soriginal examples of statements of unprovable and unrefutable inZFC were very far removed from the usual considerations ofmathematicians. Through a series of developments, starting withlater work of Godel and Cohen, various specialists in set theory,work of Friedman recognized by the NSF Alan T. Waterman Award in1984, and more recent work of Friedman, a body of such exampleshas been built up that are of increasing relevance to normalmathematical considerations. Recent work of Friedman along theselines gives new reasons for rethinking and extending the usualZFC axioms for mathematics. To test the broader impact of theresearch, Friedman actively seeks and obtains regular feedback onthe "naturalness" and "normality" of the various examples fromthe wider mathematical community. Friedman seeks to widen thisbroader impact.
奖项:DMS-0245349主要研究者:Harvey M.弗里德曼建议继续努力扩展不完全现象的范围。在先前NSF的支持下,弗里德曼发现了一种新的数学理论,该理论试图分析集合和它们的图像之间在多变量函数下的布尔关系。这种新的布尔关系理论试图分析以下形式的陈述:“对于某种类型的所有函数,存在某种类型的集合,使得给定的布尔关系在集合和它们在函数下的图像之间成立”。在先前NSF的支持下,弗里德曼发现了一个特别简单的布尔关系理论的“奇异”陈述,只有通过超越通常的数学公理才能证明。 弗里德曼已经考虑了所有6561个相同的简单形式的陈述,并表明所有这些陈述都可以用弱公理来证明或反驳,唯一的例外(直到对称性)是“奇异”陈述。 弗里德曼提出了从几个方面发展布尔关系理论,包括扩展6561个语句的集合,并将其转移到许多不同的数学环境中。到了世纪早期,数学的标准公理和规则已经建立起来--所谓的Zermelo-Frankel集合论公理(ZFC)。在20世纪30年代,库尔特·哥德尔用他的不完备性定理震惊了数学界,他的定理表明,任何像ZFC这样的系统化都是不完备的。即,总会有一些句子在系统化的体系中既不能被证明也不能被反驳。这通常被称为不完全现象。哥德尔在ZFC中关于不可证明和不可反驳的陈述的最初例子与数学家通常的考虑相去甚远。经过一系列的发展,从后来的工作哥德尔和科恩,各种专家在集合论,工作弗里德曼承认的国家科学基金会艾伦T。沃特曼奖在1984年,以及弗里德曼最近的工作,这样的例子已经建立了一个机构,越来越多的相关性正常的数学考虑。弗里德曼沿着这条路线的最新工作为重新思考和扩展数学中通常的ZFC公理提供了新的理由。为了测试这项研究的广泛影响,弗里德曼积极寻求并从更广泛的数学界获得有关各种例子的“自然性”和“正常性”的定期反馈。弗里德曼试图扩大这种更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harvey Friedman其他文献
Sinus pause in association with Lyme carditis.
窦性暂停与莱姆性心脏炎有关。
- DOI:
10.14503/thij-14-4126 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
A. Oktay;Samer R. Dibs;Harvey Friedman - 通讯作者:
Harvey Friedman
The disjunction property implies the numerical existence property.
析取性质隐含着数值存在性质。
- DOI:
10.1073/pnas.72.8.2877 - 发表时间:
1975 - 期刊:
- 影响因子:11.1
- 作者:
Harvey Friedman - 通讯作者:
Harvey Friedman
Medical Students in Developing Countries
- DOI:
10.1007/s11606-011-1744-3 - 发表时间:
2011-05-20 - 期刊:
- 影响因子:4.200
- 作者:
Jessica Merlin;Gail Morrison;Stephen Gluckman;Gregg Lipschik;Darren R. Linkin;Sarah Lyon;Elizabeth O’Grady;Heather Calvert;Harvey Friedman - 通讯作者:
Harvey Friedman
769 A CYTOMEGALOVIRUS VACCINE TRIAL IN RENAL TRANSPLANT CANDIDATES
- DOI:
10.1203/00006450-197804001-00774 - 发表时间:
1978-04-01 - 期刊:
- 影响因子:3.100
- 作者:
John P Glazer;Harvey Friedman;Robert Grossman;Clyde Barker;Stuart E Starr;Stanley A Plotkin - 通讯作者:
Stanley A Plotkin
Human brain in tissue culture
组织培养中的人脑
- DOI:
- 发表时间:
1975 - 期刊:
- 影响因子:12.7
- 作者:
Z. Wróblewska;M. Devlin;D. Gilden;D. Santoli;Harvey Friedman;H. Koprowski - 通讯作者:
H. Koprowski
Harvey Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harvey Friedman', 18)}}的其他基金
Collaborative Research: Theoretical Support for Mechanized Proof Assistants
协作研究:机械化证明助手的理论支持
- 批准号:
0401265 - 财政年份:2004
- 资助金额:
$ 21.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in the Foundations of Mathematics
数学科学:数学基础主题
- 批准号:
8902765 - 财政年份:1989
- 资助金额:
$ 21.6万 - 项目类别:
Continuing grant
Mathematical Sciences: Interdisciplinary Conference On Randomness to be held April 12-16, 1988, Columbus, Ohio
数学科学:随机性跨学科会议将于 1988 年 4 月 12-16 日在俄亥俄州哥伦布市举行
- 批准号:
8722851 - 财政年份:1988
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Interdisciplinary Conference on Axiomatic Systems, December 15-18, 1988; Columbus, Ohio
数学科学:公理系统跨学科会议,1988 年 12 月 15-18 日;
- 批准号:
8816125 - 财政年份:1988
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in the Foundations of Mathematics
数学科学:数学基础主题
- 批准号:
8601285 - 财政年份:1986
- 资助金额:
$ 21.6万 - 项目类别:
Continuing grant
Mathematical Sciences: Alan T. Waterman Award
数学科学:艾伦·T·沃特曼奖
- 批准号:
8419353 - 财政年份:1984
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations into the Necessary Use of Abstract Set Theory, and Constructive Aspects of Algebra
数学科学:对抽象集合论的必要使用和代数的构造性方面的调查
- 批准号:
8102681 - 财政年份:1981
- 资助金额:
$ 21.6万 - 项目类别:
Continuing grant
Investigations Into the Use of Higher Types, Set Theoretic Undefinability, and Intuitionistic Semantics
对高级类型、集合论不可定义性和直觉语义的使用的调查
- 批准号:
7802558 - 财政年份:1978
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
相似海外基金
Foundations of Computational Mathematics Conference – FoCM 2023
计算数学基础会议 – FoCM 2023
- 批准号:
2232812 - 财政年份:2022
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Conference on Foundations of Computational Mathematics
计算数学基础会议
- 批准号:
2001711 - 财政年份:2020
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Conference on the Foundations of Computational Mathematics 2017
2017年计算数学基础会议
- 批准号:
1723153 - 财政年份:2017
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Turning Points in the Mathematics of Space: a Formalisation of Alternative Foundations for Differential Geometry
空间数学的转折点:微分几何替代基础的形式化
- 批准号:
1931617 - 财政年份:2017
- 资助金额:
$ 21.6万 - 项目类别:
Studentship
History of the foundations of mathematics via sociological and inforrmatiics methods
通过社会学和信息学方法了解数学基础的历史
- 批准号:
16K12799 - 财政年份:2016
- 资助金额:
$ 21.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The Categorical Unification of Foundations of Mathematics and of Quantum Physics, and its Applications to Categorical Duality in Machine Learning
数学和量子物理基础的范畴统一及其在机器学习中范畴对偶性的应用
- 批准号:
15H06313 - 财政年份:2015
- 资助金额:
$ 21.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Conference on the Foundations of Computational Mathematics 2014
2014年计算数学基础会议
- 批准号:
1418833 - 财政年份:2014
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Conference on the Foundations of Computational Mathematics
计算数学基础会议
- 批准号:
1068800 - 财政年份:2011
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Paraconsistent Foundations of Mathematics
次相容数学基础
- 批准号:
DP1094962 - 财政年份:2010
- 资助金额:
$ 21.6万 - 项目类别:
Discovery Projects