Proof Theory and Set Theories
证明论和集合论
基本信息
- 批准号:9704917
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2000-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Carlson proposes to work on a far reaching program centering on the proof theory of systems of set theory which includes a semantic approach to proof theory in general and a new method for constructing ordinal notation systems for theories of sets. The set theories to be studied initially go up to and include Zermelo-Frankel set theory with the power set axiom removed but there is some likelihood that the methods will extend much farther. The notation systems lay bare a fundamental part of the structures for the corresponding set theories. The proposed research is motivated by questions which arise naturally from Godel's incompleteness theorems. These theorems imply that no reasonable mathematical system is strong enough to provide solutions to all concrete mathematical problems, e.g., determining the existence of solutions in the natural numbers to polynomial equations or verifying the correctness of computer programs. There will always be questions whose solution will hinge on the discovery of new axioms- new axioms whose acceptance will be determined by intuition. The possible new axioms which have emerged all fall into the class of "axioms of infinity" which assert the existence of larger and larger nonconcrete mathematical objects. That axioms of this sort are the only new axioms amenable to our intuition seems possible, even probable. The ultimate goal of the proposed research would be to provide convincing answers to the following questions: 1. Can the notion of axiom of infinity be given a precise definition? 2. Can all meaningful concrete mathematical problems be resolved by axioms of infinity? 3. Which axioms of infinity are necessary for the solution of meaningful concrete mathematical questions? While answers to these questions seem unlikely in the near future, especially for the first two, the successful completion of the program proposed here would be a significant step forward.
卡尔森建议工作的一个深远的计划集中在证明理论的系统集理论,其中包括一个语义的方法证明理论一般和一个新的方法,建设序数符号系统的理论集。要研究的集合论最初上升到并包括Zermelo-Frankel集合论与权力集公理删除,但有一定的可能性,该方法将延伸得更远。符号系统揭示了相应集合论结构的基本部分。 所提出的研究是出于自然产生的问题,从哥德尔的不完备性定理。这些定理意味着,没有一个合理的数学系统足够强大,可以为所有具体的数学问题提供解决方案,例如,确定多项式方程的自然数解的存在性或验证计算机程序的正确性。总有一些问题的解决将取决于新公理的发现--新公理的接受将由直觉决定。已经出现的可能的新公理都属于“无穷公理”一类,它们断言存在越来越大的非具体数学对象。这类公理是唯一符合我们直觉的新公理,这似乎是可能的,甚至是可能的。本研究的最终目标是为以下问题提供令人信服的答案:1。无穷公理的概念能给出一个精确的定义吗?2.所有有意义的具体数学问题都能用无穷大公理来解决吗?3.哪些无穷大公理是解决有意义的具体数学问题所必需的?虽然这些问题的答案似乎不太可能在不久的将来,特别是前两个,成功完成这里提出的计划将是一个重大的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Carlson其他文献
How Finishing Affects Glass Ionomers
- DOI:
10.14219/jada.archive.1991.0214 - 发表时间:
1991-07-01 - 期刊:
- 影响因子:
- 作者:
Bruce A. Matis;Timothy Carlson;Michael Cochran;Ralph W. Phillips - 通讯作者:
Ralph W. Phillips
<strong>Examination of a blood-brain barrier targeting β-galactosidase-monoclonal antibody fusion protein in a murine model of GM1-gangliosidosis</strong>
- DOI:
10.1016/j.ymgme.2020.12.210 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Michael Przybilla;Christine Stewart;Timothy Carlson;Li Ou;Brenda Koniar;Rohini Sidhu;Pamela Kell;Xuntian Jiang;Jeanine R. Jarnes;M. Gerard O'Sullivan;Chester B. Whitley - 通讯作者:
Chester B. Whitley
Revisiting the Chadwick and Lu & Pister models of finite thermoelasticity for isotropic materials
- DOI:
10.1007/s00466-024-02544-7 - 发表时间:
2024-09-21 - 期刊:
- 影响因子:3.800
- 作者:
Sanjay Govindjee;Timothy Carlson - 通讯作者:
Timothy Carlson
The implications of scientific mobility between France and the United States
- DOI:
10.1007/bf01117501 - 发表时间:
1995-01-01 - 期刊:
- 影响因子:3.200
- 作者:
Timothy Carlson;Dominique Martin-Rovet - 通讯作者:
Dominique Martin-Rovet
The international exchange of scholars: The training of young scientists through research abroad
- DOI:
10.1007/bf01097911 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:3.200
- 作者:
Dominique Martin-Rovet;Timothy Carlson - 通讯作者:
Timothy Carlson
Timothy Carlson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Carlson', 18)}}的其他基金
Mathematical Sciences: Set Theory and Analysis
数学科学:集合论与分析
- 批准号:
9106839 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Formal Systems and Combinatorics
数学科学:形式系统和组合学
- 批准号:
8617399 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Combinatorics and Formal Systems
数学科学:组合数学和形式系统
- 批准号:
8403173 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorics and Real Numbers
数学科学:组合学和实数
- 批准号:
8301816 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2348208 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
- 批准号:
2308248 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
- 批准号:
RGPIN-2021-03549 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPAS-2020-00097 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
- 批准号:
RGPIN-2017-05712 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Duality in Banach spaces and uniform spaces in constructive and predicative set theory
构造性和预测集合论中巴纳赫空间和一致空间的对偶性
- 批准号:
22K03400 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)