Set Theory and Its Applications
集合论及其应用
基本信息
- 批准号:2153975
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A century ago, there was a movement to put mathematics on a rigorous, unified foundation. Because the notion of a set is among the most primitive in mathematics, it was used as the basic fabric with which to build the more complicated objects of mathematics. Since that time, it has been realized that the properties of infinite sets are themselves quite subtle and defy a complete axiomatization. Moreover, these set-theoretic complexities sometimes manifest themselves in more complex mathematical structures, such as those studied in algebra, analysis, and geometry. The aim of this project is to further develop both our understanding of set-theoretic methods and also how they can be applied to problems arising in fields of mathematics such as algebra, analysis, and topology. While the project involves several lines of investigation, a central theme will be to develop a deeper understanding of the structure of the algebra of all piece-wise linear functions from the unit interval to itself using the lens of transfinite ordinal numbers, compactness, and large cardinals. This project includes the training of graduate students. The first part of the research project involves using set-theoretic tools to study groups of piecewise linear and piecewise projective homemorphisms. This includes attempting to prove the following conjecture of Matthew Brin and Mark Sapir: if G is a group of piece-wise linear homeomorphims of the unit interval, then either G is elementary amenable or else G contains an isomorphic copy of Richard Thompson's group F. It is the PI's thesis that not only is this conjecture true, but that it will be a consequence of a much finer analysis of subgroup structure of PLoI, the group of piece-wise linear homeomophisms of the unit interval. This analysis is expected to have other consequences: that the finitely generated subgroups of F are well quasi-ordered by embeddability; that any finitely presented subgroup of PLoI is either abelian or contains a copy of F; that Peano Arithmetic does not prove that F is amenable. Central to the analysis will be the countable transfinite ordinals. This part of the research project also concerns use of set-theoretic tools such as compactness and the algebra of elementary embeddings to study the amenability problem for F. The second part of the research project concerns further developing techniques in pure and applied set theory: methods for studying the vanishing of higher derived limits in homological algebra; the role that Jensen's diamond principle plays in the theory of the sets of hereditary cardinality at most aleph1.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一个世纪前,有一场运动把数学建立在一个严格的、统一的基础上。因为集合的概念是数学中最原始的概念之一,所以它被用作构建更复杂的数学对象的基本结构。从那时起,人们意识到无限集合的性质本身是非常微妙的,并且不符合完整的公理化。此外,这些集合论的复杂性有时表现在更复杂的数学结构中,例如代数,分析和几何中的那些。该项目的目的是进一步发展我们对集合论方法的理解,以及它们如何应用于数学领域(如代数,分析和拓扑)中出现的问题。虽然该项目涉及几条调查线,一个中心主题将是发展一个更深入的理解的结构的代数的所有分段线性函数从单位区间本身使用的透镜超限序数,紧凑性和大型基数。该项目包括培养研究生。研究项目的第一部分涉及使用集合论工具来研究分段线性和分段投射同态群。 这包括试图证明马修·布林(Matthew Brin)和马克·萨皮尔(Mark Sapir)的以下猜想:如果G是单位区间的分段线性同胚群,则G要么是初等顺从的,要么G包含理查德·汤普森群F的同构副本。这是PI的论文,不仅是这个猜想是真实的,但它将是一个更精细的分析的子群结构的PLoI,组的分段线性同胚的单位区间。这个分析预计会有其他的结果:F的非线性生成子群是很好的准有序的嵌入性; PLoI的任何非线性表示子群要么是阿贝尔的,要么包含F的副本;皮亚诺算术不能证明F是顺从的。分析的中心是可数超限序数。 这部分的研究项目还涉及到使用集合论的工具,如紧性和初等嵌入代数来研究F的顺从性问题。 研究项目的第二部分涉及在纯集合论和应用集合论中进一步发展的技术:研究同调代数中高导极限消失的方法;詹森的钻石原则在遗传基数集理论中所起的作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Moore其他文献
Predictors of Recurrent Venous Thrombosis After Cerebral Venous Thrombosis: Analysis of the ACTION-CVT Study.
脑静脉血栓形成后复发性静脉血栓形成的预测因素:ACTION-CVT 研究分析。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9.9
- 作者:
Liqi Shu;Ekaterina Bakradze;S. Omran;James A. Giles;Jordan Y. Amar;N. Henninger;Marwa Elnazeir;A. Liberman;Khadean Moncrieffe;Jenny Rotblat;Richa Sharma;Y. Cheng;Adeel S. Zubair;A. Simpkins;Grace T Li;J. Kung;D. Perez;M. Heldner;A. Scutelnic;Rascha von Martial;B. Siepen;A. Rothstein;Ossama Khazaal;David Do;S. Al kasab;Line Abdul Rahman;Eva A. Mistry;Deborah Kerrigan;Hayden Lafever;Thanh N. Nguyen;P. Klein;Hugo J. Aparicio;J. Frontera;L. Kuohn;Shashank Agarwal;C. Stretz;Narendra S Kala;Sleiman ElJamal;Allison Chang;Shawna Cutting;Fransisca Indraswari;A. D. de Havenon;Varsha Muddasani;Teddy Y. Wu;D. Wilson;A. Nouh;Daniyal Asad;A. Qureshi;Justin Moore;P. Khatri;Yasmin N. Aziz;Bryce Casteigne;Muhib Khan;Yao Cheng;Brian Mac Grory;Martin Weiss;D. Ryan;M. Vedovati;M. Paciaroni;J. Siegler;Scott Kamen;Siyuan Yu;C. L. Guerrero;Eugenie Atallah;G. D. De Marchis;A. Brehm;Tolga D. Dittrich;M. Psychogios;Ronald Alvarado;T. Kass;S. Prabhakaran;T. Honda;D. Liebeskind;K. Furie;S. Yaghi - 通讯作者:
S. Yaghi
Updates on neonatal cell and novel therapeutics: Proceedings of the Second Neonatal Cell Therapies Symposium (2024)
新生儿细胞与新型疗法的最新进展:第二届新生儿细胞疗法研讨会会议录(2024 年)
- DOI:
10.1038/s41390-025-03856-x - 发表时间:
2025-01-15 - 期刊:
- 影响因子:3.100
- 作者:
Madison C. B. Paton;Manon Benders;Remy Blatch-Williams;Elizabeth Dallimore;Adam Edwards;Ngaire Elwood;Kylie Facer;Megan Finch-Edmondson;Natasha Garrity;Adrienne Gordon;Rod W. Hunt;Graham Jenkin;Courtney A. McDonald;Justin Moore;Marcel F. Nold;Iona Novak;Himanshu Popat;Carlos Salomon;Yoshiaki Sato;Mary Tolcos;Julie A. Wixey;Tamara Yawno;Lindsay Zhou;Atul Malhotra - 通讯作者:
Atul Malhotra
INFORMING RESEARCH TO PRACTICE TRANSLATION OF TELEMEDICINE MANAGEMENT OF HYPERTENSION: A SYSTEMATIC REVIEW AND META-ANALYSIS OF CLINICAL TRIALS
- DOI:
10.1016/s0735-1097(23)02198-8 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Sameer Acharya;Gagan Neupane;Austin Seals;Sharan Sharma;Yhenneko Taylor;Deepak Palakshappa;Jeff D. Williamson;Hayden Bosworth;Justin Moore;Yashashwi Pokharel - 通讯作者:
Yashashwi Pokharel
IDENTIFYING IMPLEMENTATION TACTICS USED IN CLINICAL TRIALS OF TELEMEDICINE MANAGEMENT OF HYPERTENSION TO ENHANCE TRANSLATION INTO PRACTICE
- DOI:
10.1016/s0735-1097(23)02325-2 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Sean K. Wang;Vidhya Suresh;Adrianna Elashker;Rahma Ajja;Austin Seals;Sameer Acharya;Jeff D. Williamson;Justin Moore;Hayden Bosworth;Yashashwi Pokharel - 通讯作者:
Yashashwi Pokharel
University of California at Berkeley Berkeley, CA, USA March 24–27, 2011
加州大学伯克利分校 美国加利福尼亚州伯克利 2011 年 3 月 24-27 日
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. A. Antonelli;L. Bienvenu;L. Dries;Deirdre Haskell;Justin Moore;Christian Rosendal Uic;Neil Thapen;S. Thomas - 通讯作者:
S. Thomas
Justin Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Moore', 18)}}的其他基金
Descriptive Set Theory And Polish Groups at the Bernoulli Center
伯努利中心的描述性集合论和波兰群
- 批准号:
1800263 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Fields Institute Thematic Program: Forcing and its Applications
菲尔兹研究所主题项目:力及其应用
- 批准号:
1162052 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1950475 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1464475 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
- 批准号:
1201295 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
0968710 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Invariant Descriptive Set Theory and Its Applications
不变描述集合论及其应用
- 批准号:
0901853 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Set Theory of the Reals and its Applications
实数集合论及其应用
- 批准号:
19540127 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial set theory and its applications
组合集合论及其应用
- 批准号:
122013-1996 - 财政年份:1999
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Set theory and its applications
集合论及其应用
- 批准号:
3185-1996 - 财政年份:1999
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual