Parametric Empirical Bayes Point and Interval Estimation in Small Area Estimation from Complex Surveys

复杂调查小区域估计中的参数经验贝叶斯点和区间估计

基本信息

  • 批准号:
    9705145
  • 负责人:
  • 金额:
    $ 7.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-15 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

This collaborative research investigates various problems associated with parametric empirical Bayes point and interval estimation and measure of uncertainty of a parametric empirical Bayes small-area estimator when the data are obtained from a complex survey. In addition, the investigators will conduct three real world applications of parametric empirical Bayes analysis: (1) Estimation of U.S. Census undercount; (2) Estimation of the median income of four-person families for fifty U.S. States and the District of Columbia; and (3) Estimation of the unemployment rates for fifty U.S. states and the District of Columbia. There is a growing demand by many U.S. and overseas federal agencies to produce reliable small area statistics for various subgroups of a population. Usual design-based survey estimators are not suitable for this purpose since a typical sample survey being designed for a large population contains very little information regarding the sub-populations or small areas of interest. The problem is generally referred to as a small-area (domain) estimation problem in the sample survey literature. Development of reliable small-area statistics and suitable measures of uncertainty using information from complex surveys is extremely important. This research will advance small-area estimation methods.
这项合作研究探讨了各种问题与参数经验贝叶斯点和区间估计和测量的不确定性参数经验贝叶斯小面积估计时,从一个复杂的调查数据。 此外,研究人员将进行参数经验贝叶斯分析的三个真实的世界应用:(1)估计美国人口普查不足;(2)估计美国50个州和哥伦比亚特区的四口之家的收入中位数;(3)估计美国50个州和哥伦比亚特区的失业率。 许多美国和海外的联邦机构越来越需要为人口的各个子群体提供可靠的小区域统计数据。 基于抽样设计的调查估计量不适合这一目的,因为为大人口设计的典型抽样调查包含很少的关于子人口或感兴趣的小区域的信息。 在抽样调查文献中,该问题通常被称为小区域(域)估计问题。 利用复杂调查的信息,编制可靠的小地区统计数据和适当的不确定性衡量标准极为重要。 该研究将促进小区域估计方法的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gauri Datta其他文献

Gauri Datta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gauri Datta', 18)}}的其他基金

Collaborative Research for Developing ATD: Bayesian Methods in Syndromic Surveillance: CAR Models and Computational Implementation
开发 ATD 的协作研究:症状监测中的贝叶斯方法:CAR 模型和计算实现
  • 批准号:
    0914603
  • 财政年份:
    2009
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Standard Grant
Cross-Sectional and Time Series Approaches to Small Area Estimation: Methods and Applications
小区域估计的横截面和时间序列方法:方法和应用
  • 批准号:
    0241651
  • 财政年份:
    2003
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Continuing Grant
Asymptotic Approaches to Bayesian and Likelihood Inference
贝叶斯和似然推理的渐近方法
  • 批准号:
    0071642
  • 财政年份:
    2000
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Standard Grant

相似海外基金

RI: Small: New Directions in Probabilistic Deep Learning: Exponential Families, Bayesian Nonparametrics and Empirical Bayes
RI:小:概率深度学习的新方向:指数族、贝叶斯非参数和经验贝叶斯
  • 批准号:
    2127869
  • 财政年份:
    2021
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Standard Grant
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
  • 批准号:
    RGPIN-2017-05047
  • 财政年份:
    2019
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Shrinkage and Empirical Bayes Prediction under Asymmetry, Censoring and Nonexchangeability
不对称、审查和不可交换性下的最优收缩和经验贝叶斯预测
  • 批准号:
    1811866
  • 财政年份:
    2018
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Continuing Grant
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
  • 批准号:
    RGPIN-2017-05047
  • 财政年份:
    2018
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
  • 批准号:
    RGPIN-2017-05047
  • 财政年份:
    2017
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
  • 批准号:
    4631-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
  • 批准号:
    4631-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Maximum likelihood and nonparametric empirical Bayes methods in high dimensions
职业:高维中的最大似然和非参数经验贝叶斯方法
  • 批准号:
    1454817
  • 财政年份:
    2015
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Continuing Grant
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
  • 批准号:
    4631-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
  • 批准号:
    4631-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 7.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了