Theoretical and Computational Problems in Fluid Mechanics and Climatology

流体力学和气候学的理论和计算问题

基本信息

  • 批准号:
    9705229
  • 负责人:
  • 金额:
    $ 38.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-01 至 2000-08-31
  • 项目状态:
    已结题

项目摘要

Temam 9705229 The understanding of the equations of fluid mechanics and turbulence as well as the development of efficient numerical codes for the solution of these equations are challenging problems of considerable importance, in particular in industry or for studies in meteorology or global climate change. The aims for this project are to explore what can be learned about these problems from the theoretical and computational viewpoints, using the dynamical systems approach to turbulence. More specifically the investigators and their colleagues intend: (i) to develop new efficient computational algorithms taking into account the physics of turbulence and well adapted to the current evolution of large scale computing towards parallel computing; (ii) to devote special attention to the problems related to the study of the climate and global changes. For (i), new multilevel algorithms related to the concept of attractor and approximate inertial manifolds have been introduced during the past years. The analysis of these algorithms is developed, their performances improved, and their range of application extended, in particular towards problems of practical relevance. During the period of this grant a book will be published on this subject, describing the state of the art on the theoretical side, and including many aspects of their actual implementation on parallel computers. For (ii), a significant part of this project is devoted to the study of models for the atmosphere, the ocean and their coupling. Involved models based on the primitive equations are considered, as well as simpler models such as multilayer or quasi-geostrophic models. The study includes the development of the models and the mathematical and numerical problems that they raise. The interaction of meteorology and mathematics has very long traditions going back to such famous names as Leonard da Vinci, Pierre Simon Laplace or, in this century, after WWII, John Von Neumann. At a more modest level, the investigators pursue a program of research initiated a few years ago and aimed at developing interactions between geosciences and mathematics. These interactions can be mutually beneficial. Meteorology and oceanography raise very challenging mathematical problems very useful for mathematicians and other scientists (for example scientists have learned much from the experience of E. Lorenz in chaos). Conversely, mathematicians might help scientists of the geoscience communities in choosing their models by determining if they are well posed. In the long range they might help also develop new efficient numerical procedures; although the codes (programs) used in meteorology and oceanography are very involved codes written over a long period of time, eventually new codes will be written responding to new needs or new opportunities, and new insights could become useful; it is hoped to contribute to this daunting task.
Temam 9705229 流体力学和湍流方程的理解,以及这些方程的解决方案的有效的数值代码的发展是相当重要的挑战性问题,特别是在工业或在气象学或全球气候变化的研究。 这个项目的目的是探索可以从理论和计算的角度来了解这些问题,使用动力系统方法湍流。 更具体地说,研究人员和他们的同事打算:(i)开发新的有效的计算算法,考虑到湍流的物理学,并很好地适应当前的大规模计算向并行计算的演变;(ii)特别关注与气候和全球变化研究有关的问题。 对于(i),在过去的几年中,已经引入了与吸引子和近似惯性流形的概念相关的新的多级算法。 这些算法的分析开发,其性能得到改善,其应用范围扩大,特别是对实际相关的问题。 在此期间,将出版一本关于这一主题的书,描述理论方面的最新技术,并包括在并行计算机上实际实现的许多方面。 对于(二)项,该项目的一个重要部分是专门研究大气、海洋及其耦合的模型。 所涉及的模型的基础上的原始方程被认为是,以及更简单的模型,如多层或准地转模式。 这项研究包括模型的发展以及它们提出的数学和数值问题。 气象学和数学的相互作用有着悠久的传统,可以追溯到伦纳德达芬奇,皮埃尔西蒙拉普拉斯,或者在这个世纪,二战后,约翰冯诺依曼。 在一个更温和的水平上,研究人员正在进行一项几年前启动的研究计划,旨在发展地球科学和数学之间的相互作用。 这些互动可以是互利的。 气象学和海洋学提出了非常具有挑战性的数学问题,对数学家和其他科学家非常有用(例如,科学家们从E。 Lorenz in chaos)。 相反,数学家可以帮助地球科学界的科学家选择他们的模型,确定它们是否是适定的。 从长远来看,它们也可能有助于开发新的有效的数值程序;虽然气象学和海洋学中使用的代码(程序)是经过很长一段时间编写的非常复杂的代码,但最终会编写新的代码来应对新的需求或新的机会,新的见解可能会变得有用;希望有助于这项艰巨的任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Temam其他文献

Stochastic Burgers' equation
Preface: In Memory of A.V. Balakrishnan
  • DOI:
    10.1007/s00245-016-9351-7
  • 发表时间:
    2016-04-11
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
On the anti-plane shear problem in finite elasticity
  • DOI:
    10.1007/bf00043860
  • 发表时间:
    1981-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Morton E. Gurtin;Roger Temam
  • 通讯作者:
    Roger Temam
Simulations of the 2.5D inviscid primitive equations in a limited domain
  • DOI:
    10.1016/j.jcp.2008.08.005
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qingshan Chen;Roger Temam;Joseph J. Tribbia
  • 通讯作者:
    Joseph J. Tribbia
The Linearized 2D Inviscid Shallow Water Equations in a Rectangle: Boundary Conditions and Well-Posedness

Roger Temam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Temam', 18)}}的其他基金

Mathematical Problems of Geophysical Fluid Mechanics: Uncertainties, Modeling, Theory, and Computing
地球物理流体力学的数学问题:不确定性、建模、理论和计算
  • 批准号:
    1510249
  • 财政年份:
    2015
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Problems of Geophysical Fluid Mechanics: Modeling, Theory and Computing
地球物理流体力学问题:建模、理论和计算
  • 批准号:
    1206438
  • 财政年份:
    2012
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Nonlinear and Computational Problems for Geophysical and Classical Fluid Mechanics
地球物理和经典流体力学的非线性和计算问题
  • 批准号:
    0906440
  • 财政年份:
    2009
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Analytical and Computational Methods for the Atmosphere and the Ocean, and for Classical Fluid Mechanics
大气和海洋以及经典流体力学的分析和计算方法
  • 批准号:
    0604235
  • 财政年份:
    2006
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Computational and Theoretical Problems in Fluid Mechanics, Meteorology and Oceanography
流体力学、气象学和海洋学中的计算和理论问题
  • 批准号:
    0305110
  • 财政年份:
    2003
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Nonlinear Problems in Fluid Mechanics, Meteorology & Oceanography
流体力学、气象学中的非线性问题
  • 批准号:
    0074334
  • 财政年份:
    2000
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Theoretical and Computational Problems in Turbulence and Climatology
数学科学:湍流和气候学中的理论和计算问题
  • 批准号:
    9400615
  • 财政年份:
    1994
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Computational Methods for Many-Physics Problems Involving Multi-Material Flows
LEAPS-MPS:涉及多材料流的许多物理问题的计算方法
  • 批准号:
    2302080
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
An Efficient Computational Solver for Complex Engineering Problems
复杂工程问题的高效计算求解器
  • 批准号:
    DE230101281
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of New Computational Methods for Phase Transition in Flow Problems With Contact Between Moving Solid Surfaces
移动固体表面接触流动问题相变新计算方法的开发
  • 批准号:
    23H00477
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
  • 批准号:
    RGPIN-2016-04274
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
  • 批准号:
    RGPIN-2019-04830
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
  • 批准号:
    RGPIN-2020-05115
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
  • 批准号:
    RGPIN-2018-03863
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
  • 批准号:
    RGPIN-2019-04269
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了