Computational and Theoretical Problems in Fluid Mechanics, Meteorology and Oceanography

流体力学、气象学和海洋学中的计算和理论问题

基本信息

  • 批准号:
    0305110
  • 负责人:
  • 金额:
    $ 32.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

Some fundamental problems of meteorology, oceanography, and fluidmechanics will be addressed. The areas to be covered include a) The openboundary conditions for limited domains simulations, b) The study ofbalanced and unbalanced models in atmosphere sciences, c) Statisticalsolutions of Navier-Stokes equations and turbulence. These problems willbe addressed by a robust combination of advanced mathematical tools, andperformant computational tools. This study is aimed at improving, in the long range, the numericalsimulations on computer of these phenomena whose understanding isessential for many problems in environment and energy. For instanceproblem a) is important for improving local weather predictions withapplications including e.g. agriculture and aviation. Problems b) isimportant for understanding the large scale motion of the atmosphere;however the techniques used (averaging of oscillations) are also needed inmany other fields, in particular biomathematics. Problems c) are morefundamental in nature, they pertain to the understanding of turbulence,that is a serious impediment in many studies on energy (and environment).By its nature the proposal has a strong interdisciplinary component, withsenior geophysicists directly involved in topics a) and b). The proposalhas also a strong educational component (interdisciplinary training ofgraduate students and post docs).
一些气象学、海洋学和流体力学的基本问题将被讨论。 内容包括a)有限区域模拟的开边界条件,B)大气科学中平衡和非平衡模式的研究,c)Navier-Stokes方程和湍流的统计解。 这些问题将通过先进的数学工具和高性能计算工具的强大组合来解决。 本研究的目的是从长远上改进这些现象的计算机数值模拟,这些现象的理解对于许多环境和能源问题是必不可少的。例如,问题a)对于改善当地天气预报很重要,其应用包括农业和航空. 问题B)对于理解大气的大尺度运动是重要的;然而,所使用的技术(振荡的平均)在许多其他领域,特别是生物数学中也是需要的。问题c)本质上更基本,它们涉及对湍流的理解,这是许多能源(和环境)研究的严重障碍。就其本质而言,该提案具有很强的跨学科成分,高级物理学家直接参与主题a)和B)。 该提案也有很强的教育成分(研究生和博士后的跨学科培训)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Temam其他文献

Stochastic Burgers' equation
Preface: In Memory of A.V. Balakrishnan
  • DOI:
    10.1007/s00245-016-9351-7
  • 发表时间:
    2016-04-11
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
On the anti-plane shear problem in finite elasticity
  • DOI:
    10.1007/bf00043860
  • 发表时间:
    1981-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Morton E. Gurtin;Roger Temam
  • 通讯作者:
    Roger Temam
Simulations of the 2.5D inviscid primitive equations in a limited domain
  • DOI:
    10.1016/j.jcp.2008.08.005
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qingshan Chen;Roger Temam;Joseph J. Tribbia
  • 通讯作者:
    Joseph J. Tribbia
The Linearized 2D Inviscid Shallow Water Equations in a Rectangle: Boundary Conditions and Well-Posedness

Roger Temam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Temam', 18)}}的其他基金

Mathematical Problems of Geophysical Fluid Mechanics: Uncertainties, Modeling, Theory, and Computing
地球物理流体力学的数学问题:不确定性、建模、理论和计算
  • 批准号:
    1510249
  • 财政年份:
    2015
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Standard Grant
Problems of Geophysical Fluid Mechanics: Modeling, Theory and Computing
地球物理流体力学问题:建模、理论和计算
  • 批准号:
    1206438
  • 财政年份:
    2012
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Standard Grant
Nonlinear and Computational Problems for Geophysical and Classical Fluid Mechanics
地球物理和经典流体力学的非线性和计算问题
  • 批准号:
    0906440
  • 财政年份:
    2009
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Standard Grant
Analytical and Computational Methods for the Atmosphere and the Ocean, and for Classical Fluid Mechanics
大气和海洋以及经典流体力学的分析和计算方法
  • 批准号:
    0604235
  • 财政年份:
    2006
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Standard Grant
Nonlinear Problems in Fluid Mechanics, Meteorology & Oceanography
流体力学、气象学中的非线性问题
  • 批准号:
    0074334
  • 财政年份:
    2000
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Continuing Grant
Theoretical and Computational Problems in Fluid Mechanics and Climatology
流体力学和气候学的理论和计算问题
  • 批准号:
    9705229
  • 财政年份:
    1997
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Theoretical and Computational Problems in Turbulence and Climatology
数学科学:湍流和气候学中的理论和计算问题
  • 批准号:
    9400615
  • 财政年份:
    1994
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Continuing Grant

相似海外基金

Theoretical and empirical research on solving public goods problems through leader support systems
通过领导支持系统解决公共产品问题的理论与实证研究
  • 批准号:
    23K02852
  • 财政年份:
    2023
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Investigations of some Outstanding Problems in Biophysical Chemistry
生物物理化学若干突出问题的理论研究
  • 批准号:
    RGPIN-2022-04842
  • 财政年份:
    2022
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Discovery Grants Program - Individual
A theoretical and empirical challenge to unsolved problems in the analysis of the leading indicator property of the term spread
对期限利差领先指标属性分析中未解决问题的理论和实证挑战
  • 批准号:
    19K01767
  • 财政年份:
    2019
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hermeneutics of Resilience. Theoretical documentation, supervision and comments on resesarch problems and results
复原力的解释学。
  • 批准号:
    410359785
  • 财政年份:
    2019
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Research Units
Development of a theoretical framework for health education that fosters the ability to solve health problems
开发健康教育理论框架,培养解决健康问题的能力
  • 批准号:
    18K02692
  • 财政年份:
    2018
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CRII: AF: Theoretical Problems in Quantum Computation
CRII:AF:量子计算中的理论问题
  • 批准号:
    1755800
  • 财政年份:
    2018
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Standard Grant
A theoretical research on the multiple assignment problems
多重赋值问题的理论研究
  • 批准号:
    18K12741
  • 财政年份:
    2018
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Theoretical and empirical research on ethical problems of artificial intelligence, robots and cyborgs
人工智能、机器人和赛博格伦理问题的理论与实证研究
  • 批准号:
    17K12800
  • 财政年份:
    2017
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
AF: CQIS: Small: Theoretical Problems in Quantum Information
AF:CQIS:小:量子信息中的理论问题
  • 批准号:
    1717523
  • 财政年份:
    2017
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Standard Grant
Theoretical study on spin-liquid states in frustrated magnets and related problems
受挫磁体中自旋液体状态的理论研究及相关问题
  • 批准号:
    17K05519
  • 财政年份:
    2017
  • 资助金额:
    $ 32.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了