Generalized Linear Models

广义线性模型

基本信息

  • 批准号:
    9705347
  • 负责人:
  • 金额:
    $ 23.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

McCullagh 9705347 This research will examine a number of issues, all bearing directly or indirectly on statistical models of the generalized linear type. A major part of the work is concerned with multivariate models, either graphical dependence models, or marginal models constructed for epidemiological or similar purposes. The extent to which such models are capable of a causal interpretation will be examined. Apart from specialized models such as those arising in the analysis of ranked data, a most pressing need has been for satisfactory methods for dealing with non-linear models having several components of variation. Residual likelihood is one technique used in linear models for the estimation of variance components, by-passing the regression parameters. The intention is to develop a similar strategy for generalized linear models in order to help focus attention on subsets of the parameters without compromising the inferences. The final component of the research is related to the algebra of model formulae, and in particular, on the limitations of the algebra in common use, particularly where homologous factors are involved. Only a minority of group-invariant subspaces correspond to interesting statistical models: A promising alternative to group-invariance is monoid-invariance, which corresponds closely to factorial models. The aim is to find a succinct way of specifying suitable invariant subspaces in a way that is unambiguous and can be understood by statistician and computer alike. This exercise will involve a mixture of algebra and computational work. Generalized linear models have been used in a wide variety of applications in the social, physical and biological sciences, in addition to commercial applications such as insurance and marketing. Despite this success, there are a number of important areas in which further development would be beneficial. Foremost among these are applications in which random effects accrue from several identifiable sources. Examples incl ude longitudinal studies, genetic models for plant and animal breeding, and agricultural field experiments. Methods will be developed to deal with patterns of dependence induced by such random effects. A second area on which some progress has already been made is the connection between statistical model formulas and what are known in algebra as monoid-invariant subspaces. The currently-used algebra for statistical models is incapable of recognizing that two factors have the same set of levels. An extended algebra will be developed to accommodate this phenomenon.
麦卡拉9705347这项研究将审查一些问题,所有这些问题都直接或间接地与广义线性类型的统计模型有关。这项工作的主要部分是关于多变量模型,要么是图形依赖模型,要么是为流行病学或类似目的而构建的边际模型。我们将考察这些模型在多大程度上能够进行因果解释。除了专门的模型,例如那些在分析排序数据时出现的模型,最迫切的需要是找到令人满意的方法来处理具有几个变化分量的非线性模型。残差似然是线性模型中用于估计方差分量的一种技术,它绕过回归参数。其目的是为广义线性模型开发类似的策略,以便在不影响推断的情况下帮助将注意力集中在参数的子集上。研究的最后一部分涉及模型公式的代数,特别是关于常用代数的局限性,特别是在涉及同源因素的情况下。只有一小部分群不变子空间对应于有趣的统计模型:群不变的一个有前途的替代方案是么半群不变,它与阶乘模型密切对应。其目的是找到一种简明的方法来指定合适的不变子空间,这种方法是明确的,并且可以被统计学家和计算机理解。这项练习将涉及代数和计算工作的混合。除了保险和营销等商业应用外,广义线性模型还被广泛应用于社会科学、物理学和生物科学的各种应用中。尽管取得了这样的成功,但仍有一些重要领域的进一步发展将是有益的。其中最重要的是从几个可识别的来源产生随机效应的应用。例子包括纵向研究、动植物育种的遗传模型和农业田间试验。将开发方法来处理由这种随机效应引起的依赖模式。已经取得一些进展的第二个领域是统计模型公式和在代数中被称为么半群不变子空间之间的联系。目前用于统计模型的代数不能识别两个因素具有相同的水平集。将发展一种扩展的代数来适应这一现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter McCullagh其他文献

Response to discussants of “survival models and health sequences”
  • DOI:
    10.1007/s10985-018-9447-2
  • 发表时间:
    2018-08-03
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Walter Dempsey;Peter McCullagh
  • 通讯作者:
    Peter McCullagh
This information is current as Mechanisms and Away from Hypermutation CombinatorialShifting the Emphasis Toward A New Model of Sheep Ig Diversification
此信息是最新的机制和远离超突变组合将重点转向绵羊 Ig 多样化的新模型
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Jenne;Laurie J. Kennedy;Peter McCullagh;John D. Reynolds
  • 通讯作者:
    John D. Reynolds
Suppression of anti-thyrocyte autoreactivity by the lymphocytes of normal fetal lambs.
正常胎羔的淋巴细胞抑制抗甲状腺细胞自身反应性。
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Xiaohua Chen;James Shelton;Peter McCullagh
  • 通讯作者:
    Peter McCullagh
Expression and regulation of anti-thyroid autoimmunity directed against cultivated rat thyrocytes.
针对培养大鼠甲状腺细胞的抗甲状腺自身免疫的表达和调节。
  • DOI:
    10.1016/0896-8411(95)90006-3
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Xiaohua Chen;Peter McCullagh
  • 通讯作者:
    Peter McCullagh
Stochastic classification models
随机分类模型
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter McCullagh;Jie Yang
  • 通讯作者:
    Jie Yang

Peter McCullagh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter McCullagh', 18)}}的其他基金

Generalized Linear Models
广义线性模型
  • 批准号:
    0906592
  • 财政年份:
    2009
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Continuing Grant
Generalized Linear Models
广义线性模型
  • 批准号:
    0305009
  • 财政年份:
    2003
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Continuing Grant
Generalized Linear Models
广义线性模型
  • 批准号:
    0071726
  • 财政年份:
    2000
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Graduate & Postdoctoral Education in Cross-Disciplinary Research
数学科学/GIG:研究生
  • 批准号:
    9709696
  • 财政年份:
    1997
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Standard Grant
Mathematical Sciences: General Linear Models
数学科学:一般线性模型
  • 批准号:
    9403560
  • 财政年份:
    1994
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Generalized Linear Models
数学科学:广义线性模型
  • 批准号:
    9101333
  • 财政年份:
    1991
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Generalized Linear Models
数学科学:广义线性模型
  • 批准号:
    8801853
  • 财政年份:
    1988
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Power and sample size for generalized linear models
广义线性模型的功效和样本量
  • 批准号:
    10680962
  • 财政年份:
    2023
  • 资助金额:
    $ 23.85万
  • 项目类别:
Generalized linear mixed models for copula-based bivariate survival analysis
基于联结的二元生存分析的广义线性混合模型
  • 批准号:
    22K11948
  • 财政年份:
    2022
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MSA: Understanding biological invasions across spatial scales using Phylogenetic Generalized Linear Mixed Models (PGLMM)
MSA:使用系统发育广义线性混合模型 (PGLMM) 了解跨空间尺度的生物入侵
  • 批准号:
    2213567
  • 财政年份:
    2022
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Standard Grant
Estimation strategy of generalized partial linear models (GPLM) for independent and longitudinal data
独立纵向数据的广义偏线性模型(GPLM)估计策略
  • 批准号:
    553490-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Global Goodness-of-Fit Tests for Generalized Linear Models
广义线性模型的全局拟合优度检验
  • 批准号:
    542810-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2018
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Discovery Grants Program - Individual
Directional testing in generalized linear models
广义线性模型中的定向测试
  • 批准号:
    510892-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 23.85万
  • 项目类别:
    University Undergraduate Student Research Awards
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2017
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2016
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了