Generalized Linear Models
广义线性模型
基本信息
- 批准号:0071726
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Peter McCullagh will investigate a number of issues, all bearing directly or indirectly on generalized linear models. The main theme of the proposal is the development of a framework for constructing logically consistent statistical models, whose hallmark is extendability or scope. Every sensible linear model for a two-way layout with 4 treatments and 7 blocks must ordinarily be one element, or vector space, in a sequence of logically related vector spaces, one such subspace for each layout. Logical consistency demands that the restriction of one subspace to a subset of the blocks or treatments must coincide with the subspace associated with this subset. In mathematical terms, not only must the model be invariant under permutation of treatments and permutation of blocks, but the sequence of vector spaces must be closed under restriction to subsets. In algebraic terminology, such a sequence of vector spaces constitutesa representation of the category of injective maps on finite sets. The standard factorial models (hierarchical interaction models) coincide precisely with the regular sub-representations of the product category. The PI has developed this notion of extendability for designs, common in genetic studies of plant and animal breeding, in which two or more factors have the same set of levels. In order to accommodate these new models, it is found necessary to extend the factorial model formulaeby the inclusion of several new operators that are relevant only for homologous factors. The aim is to develop a succinct way of specifying category-invariant subspaces, i.e.~models, in a way that is unambiguous and can be understood by the computer.This proposal aims to study statistical models from the viewpoint of their logical structure, and to develop new models where appropriate.In each new area of application, whether it be genetics, biology or social science, new considerations relevant to the application emerge.For example, in experiments connected with plant breeding, the same set of plants may occur as males contributing pollen and as females contributing ova. Likewise, in citation studies, a given journal may occur as a citing journal or as a cited journal. Homologous factors of this sort rarely arise in agricultural field trials where factorial models were first developed. As a result, standard statistical models are not well suited to such applications. It is the aim of this proposal to study such structures from a logical viewpoint and to develop new statistical models where needed.
Peter McCullagh将研究一些问题,所有这些问题都直接或间接地与广义线性模型有关。 该提案的主题是建立一个框架,用于构建逻辑上一致的统计模型,其特点是可扩展性或范围。 对于具有4个处理和7个块的双向布局,每个合理的线性模型通常必须是逻辑相关向量空间序列中的一个元素或向量空间,每个布局都有一个这样的子空间。 逻辑一致性要求一个子空间对块或处理的子集的限制必须与与该子集相关联的子空间一致。 在数学术语中,不仅模型必须在处理的置换和块的置换下不变,而且向量空间序列必须在子集的限制下闭合。 在代数术语中,这样的向量空间序列构成了有限集上内射映射范畴的一种表示。 标准的析因模型(层次交互模型)与产品类别的常规子表示完全一致。 PI已经发展了这种设计的可扩展性概念,在植物和动物育种的遗传研究中很常见,其中两个或更多个因素具有相同的水平。 为了适应这些新的模型,它被发现有必要扩展factorial模型formulaebby包括几个新的运营商是相关的同源因子。 目的是发展一种简洁的方法来指定范畴不变子空间,即~模型,以一种明确的方式,可以被计算机理解。这个建议的目的是从它们的逻辑结构的角度来研究统计模型,并在适当的地方开发新的模型。在每一个新的应用领域,无论是遗传学,生物学还是社会科学,都出现了与应用有关的新考虑。例如,在与植物育种有关的实验中,同一组植物可能以雄性提供花粉和雌性提供卵子的形式出现。 同样,在引文研究中,一个给定的期刊可能会出现作为一个引用期刊或作为一个被引用期刊。 在农业田间试验中,这种同源因子很少出现,因为因子模型是在田间试验中首次开发的。 因此,标准的统计模型并不适合这种应用。 本提案的目的是从逻辑角度研究这些结构,并在必要时开发新的统计模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter McCullagh其他文献
Response to discussants of “survival models and health sequences”
- DOI:
10.1007/s10985-018-9447-2 - 发表时间:
2018-08-03 - 期刊:
- 影响因子:1.000
- 作者:
Walter Dempsey;Peter McCullagh - 通讯作者:
Peter McCullagh
This information is current as Mechanisms and Away from Hypermutation CombinatorialShifting the Emphasis Toward A New Model of Sheep Ig Diversification
此信息是最新的机制和远离超突变组合将重点转向绵羊 Ig 多样化的新模型
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
C. Jenne;Laurie J. Kennedy;Peter McCullagh;John D. Reynolds - 通讯作者:
John D. Reynolds
Suppression of anti-thyrocyte autoreactivity by the lymphocytes of normal fetal lambs.
正常胎羔的淋巴细胞抑制抗甲状腺细胞自身反应性。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:12.8
- 作者:
Xiaohua Chen;James Shelton;Peter McCullagh - 通讯作者:
Peter McCullagh
Expression and regulation of anti-thyroid autoimmunity directed against cultivated rat thyrocytes.
针对培养大鼠甲状腺细胞的抗甲状腺自身免疫的表达和调节。
- DOI:
10.1016/0896-8411(95)90006-3 - 发表时间:
1995 - 期刊:
- 影响因子:12.8
- 作者:
Xiaohua Chen;Peter McCullagh - 通讯作者:
Peter McCullagh
Interpretation of local false discovery rates under the zero assumption
零假设下局部错误发现率的解释
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daniel Xiang;Nikolaos Ignatiadis;Peter McCullagh - 通讯作者:
Peter McCullagh
Peter McCullagh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter McCullagh', 18)}}的其他基金
Mathematical Sciences/GIG: Graduate & Postdoctoral Education in Cross-Disciplinary Research
数学科学/GIG:研究生
- 批准号:
9709696 - 财政年份:1997
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Mathematical Sciences: General Linear Models
数学科学:一般线性模型
- 批准号:
9403560 - 财政年份:1994
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Generalized Linear Models
数学科学:广义线性模型
- 批准号:
9101333 - 财政年份:1991
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Generalized Linear Models
数学科学:广义线性模型
- 批准号:
8801853 - 财政年份:1988
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Power and sample size for generalized linear models
广义线性模型的功效和样本量
- 批准号:
10680962 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Generalized linear mixed models for copula-based bivariate survival analysis
基于联结的二元生存分析的广义线性混合模型
- 批准号:
22K11948 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MSA: Understanding biological invasions across spatial scales using Phylogenetic Generalized Linear Mixed Models (PGLMM)
MSA:使用系统发育广义线性混合模型 (PGLMM) 了解跨空间尺度的生物入侵
- 批准号:
2213567 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Estimation strategy of generalized partial linear models (GPLM) for independent and longitudinal data
独立纵向数据的广义偏线性模型(GPLM)估计策略
- 批准号:
553490-2020 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Global Goodness-of-Fit Tests for Generalized Linear Models
广义线性模型的全局拟合优度检验
- 批准号:
542810-2019 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
- 批准号:
RGPIN-2015-06124 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
- 批准号:
RGPIN-2015-06124 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Directional testing in generalized linear models
广义线性模型中的定向测试
- 批准号:
510892-2017 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
University Undergraduate Student Research Awards
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
- 批准号:
RGPIN-2015-06124 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
- 批准号:
RGPIN-2015-06124 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual