Parametric Empirical Bayes Point and Interval Estimation in Small Area Estimation from Complex Surveys
复杂调查小区域估计中的参数经验贝叶斯点和区间估计
基本信息
- 批准号:9705574
- 负责人:
- 金额:$ 6.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-15 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative research investigates various problems associated with parametric empirical Bayes point and interval estimation and measure of uncertainty of a parametric empirical Bayes small-area estimator when the data are obtained from a complex survey. In addition, the investigators will conduct three real world applications of parametric empirical Bayes analysis: (1) Estimation of U.S. Census undercount; (2) Estimation of the median income of four-person families for fifty U.S. States and the District of Columbia; and (3) Estimation of the unemployment rates for fifty U.S. states and the District of Columbia. There is a growing demand by many U.S. and overseas federal agencies to produce reliable small area statistics for various subgroups of a population. Usual design-based survey estimators are not suitable for this purpose since a typical sample survey being designed for a large population contains very little information regarding the sub-populations or small areas of interest. The problem is generally referred to as a small-area (domain) estimation problem in the sample survey literature. Development of reliable small-area statistics and suitable measures of uncertainty using information from complex surveys is extremely important. This research will advance small-area estimation methods.
本合作研究探讨了从复杂调查中获得数据时,与参数经验贝叶斯点和区间估计以及参数经验贝叶斯小面积估计器的不确定性测量相关的各种问题。此外,研究人员将进行参数实证贝叶斯分析的三个实际应用:(1)估计美国人口普查漏报;(2)美国50个州和哥伦比亚特区四口之家的收入中位数估算;(3)估计美国50个州和哥伦比亚特区的失业率。许多美国和海外联邦机构越来越需要为人口的各个亚群体提供可靠的小区域统计数据。通常的基于设计的调查估计不适合这个目的,因为为大量人口设计的典型抽样调查包含的关于子人口或小兴趣区域的信息非常少。在样本调查文献中,这个问题通常被称为小区域(域)估计问题。利用来自复杂调查的信息制定可靠的小地区统计数据和适当的不确定性措施是极其重要的。本研究将推动小面积估算方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parthasarathi Lahiri其他文献
Vitamin B(12) deficiency and incontinence: is there an association?
维生素 B(12) 缺乏和失禁:有关联吗?
- DOI:
10.1093/gerona/57.9.m583 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
J. Endo;Shijie Chen;J. Potter;A. Ranno;Saira Asadullah;Parthasarathi Lahiri - 通讯作者:
Parthasarathi Lahiri
Parthasarathi Lahiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parthasarathi Lahiri', 18)}}的其他基金
Statistical Analysis with Computerized Linked Data
使用计算机关联数据进行统计分析
- 批准号:
1758808 - 财政年份:2018
- 资助金额:
$ 6.51万 - 项目类别:
Continuing Grant
International Travel Grant to Support U.S. Researchers to Attend the International Statistical Institute Satellite Meeting on Small Area Estimation
国际旅行补助金支持美国研究人员参加国际统计研究所小区域估算卫星会议
- 批准号:
1532741 - 财政年份:2015
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
On Area Specific Uncertainty Measures in Small Area Estimation
小区域估计中区域特定不确定性测度
- 批准号:
1534413 - 财政年份:2015
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Collaborative Research: Computation-driven small area inference with applications
协作研究:计算驱动的小区域推理与应用
- 批准号:
0851001 - 财政年份:2009
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Collaborative Research: Small-Area Estimation - A Growing Problem for the Next Millennium
协作研究:小区域估计 - 下一个千年日益严重的问题
- 批准号:
9978145 - 财政年份:1999
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Conference on Current Topics in Survey Sampling
调查抽样当前主题会议
- 批准号:
9709916 - 财政年份:1997
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
U.S.-India Collaborative Research: Small-area Estimation Problems
美印合作研究:小区域估计问题
- 批准号:
9505197 - 财政年份:1995
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Empirical Bayes and Hierarchical Bayes Analysis of Small Area Means in Complex Surveys
复杂调查中小面积均值的经验贝叶斯和分层贝叶斯分析
- 批准号:
9511202 - 财政年份:1995
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Empirical and Hierarchical Bayes Methods in Small Area Estimation Problems
小区域估计问题中的经验和分层贝叶斯方法
- 批准号:
9206326 - 财政年份:1992
- 资助金额:
$ 6.51万 - 项目类别:
Continuing Grant
相似海外基金
RI: Small: New Directions in Probabilistic Deep Learning: Exponential Families, Bayesian Nonparametrics and Empirical Bayes
RI:小:概率深度学习的新方向:指数族、贝叶斯非参数和经验贝叶斯
- 批准号:
2127869 - 财政年份:2021
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
- 批准号:
RGPIN-2017-05047 - 财政年份:2019
- 资助金额:
$ 6.51万 - 项目类别:
Discovery Grants Program - Individual
Optimal Shrinkage and Empirical Bayes Prediction under Asymmetry, Censoring and Nonexchangeability
不对称、审查和不可交换性下的最优收缩和经验贝叶斯预测
- 批准号:
1811866 - 财政年份:2018
- 资助金额:
$ 6.51万 - 项目类别:
Continuing Grant
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
- 批准号:
RGPIN-2017-05047 - 财政年份:2018
- 资助金额:
$ 6.51万 - 项目类别:
Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
- 批准号:
RGPIN-2017-05047 - 财政年份:2017
- 资助金额:
$ 6.51万 - 项目类别:
Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
- 批准号:
4631-2012 - 财政年份:2016
- 资助金额:
$ 6.51万 - 项目类别:
Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
- 批准号:
4631-2012 - 财政年份:2015
- 资助金额:
$ 6.51万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Maximum likelihood and nonparametric empirical Bayes methods in high dimensions
职业:高维中的最大似然和非参数经验贝叶斯方法
- 批准号:
1454817 - 财政年份:2015
- 资助金额:
$ 6.51万 - 项目类别:
Continuing Grant
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
- 批准号:
4631-2012 - 财政年份:2014
- 资助金额:
$ 6.51万 - 项目类别:
Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/censored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/危险/删失回归的非/半参数方法;
- 批准号:
4631-2012 - 财政年份:2013
- 资助金额:
$ 6.51万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




