Statistical Analysis with Computerized Linked Data
使用计算机关联数据进行统计分析
基本信息
- 批准号:1758808
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will develop a new theoretical framework for analyzing data obtained from multiple sources to solve important small area estimation problems. It would be prohibitively expensive to produce statistics on spatial and temporal granularity using traditional methods that rely solely on sample survey data. Large databases such as administrative or census records in combination with sample surveys offer potential solutions to these sparse data problems, but methodological questions arise when these alternative data sources are brought together to produce small area statistics. This project will address these methodological questions by developing a framework that extracts the maximum possible information from multiple sources of data. The project will enable formulation and analysis of complex and challenging questions of scientific interest and societal importance. The research results will impact the definition of new data structures and models and software tools and strategies for analyzing complex computerized data settings, such as social statistics and business. Graduate student research will be supported by this project. To further the dissemination of research results and support the training needs of current and future survey statisticians, the investigator will offer workshops/seminars/webinars in the Washington, D.C. area.Government agencies need timely and finer-grain data to effectively plan and evaluate different government programs for the public good. People generally are more concerned about statistics for their own community, such as the crime rate in their neighborhood last week, than statistics for the entire nation in the last year. The investigator will develop a new general integrated model that combines a permutation linkage model with a small area model to extract maximum possible information from multiple sources of data available at different hierarchical levels. The model will be implemented using a frequentist approach. The investigator will explore the theoretical properties of empirical best predictors and the jackknife estimator of uncertainly under the integrated model. The methodology to be developed will be evaluated by extensive simulations and real data applications. During this project, the investigator will address a number of challenging issues in the presence of certain linkage errors, including modelling, model diagnostics and model selection, measuring uncertainty of the proposed estimators, and evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发一个新的理论框架,用于分析从多个来源获得的数据,以解决重要的小区域估计问题。使用仅依赖于抽样调查数据的传统方法来编制关于空间和时间粒度的统计数据,其成本将高得令人望而却步。行政或普查记录等大型数据库与抽样调查相结合,为这些数据稀少的问题提供了潜在的解决办法,但当这些替代数据来源被汇集在一起以产生小范围的统计数据时,就会出现方法问题。本项目将通过制定一个框架,从多种数据来源中尽可能提取信息,解决这些方法问题。该项目将有助于制定和分析具有科学意义和社会重要性的复杂和挑战性问题。研究结果将影响新的数据结构和模型的定义,以及用于分析复杂的计算机化数据设置(如社会统计和商业)的软件工具和策略。研究生的研究将得到该项目的支持。为了进一步传播研究成果并支持当前和未来调查统计人员的培训需求,调查员将在华盛顿,华盛顿特区地区举办讲习班/研讨会/网络研讨会。政府机构需要及时和更精细的数据,以有效地规划和评估不同的政府公共利益计划。人们通常更关心自己社区的统计数据,比如上周他们社区的犯罪率,而不是去年全国的统计数据。研究者将开发一种新的通用综合模型,该模型将排列连锁模型与小区域模型相结合,以从不同层次的多个数据来源中提取最大可能的信息。 该模型将使用频率论方法实施。研究者将探讨整合模型下经验最佳预测量与不确定性之折刀估计量之理论性质。 将通过广泛的模拟和真实的数据应用来评价拟开发的方法。在这个项目中,研究人员将解决一些具有挑战性的问题,在存在某些联系的错误,包括建模,模型诊断和模型选择,测量不确定性的建议估计,和evaluation.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of mask effectiveness perception for small domains using multiple data sources
使用多个数据源估计小域的口罩有效性感知
- DOI:10.2478/stattrans-2022-0001
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sen, Aditi;Lahiri, Partha
- 通讯作者:Lahiri, Partha
A general Bayesian approach to meet different inferential goals in poverty research for small areas
满足小地区贫困研究不同推理目标的通用贝叶斯方法
- DOI:10.21307/stattrans-2020-040
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lahiri, Partha;Suntornchost, Jiraphan
- 通讯作者:Suntornchost, Jiraphan
Statistical Analysis with Linked Data
- DOI:10.1111/insr.12295
- 发表时间:2018-10
- 期刊:
- 影响因子:2
- 作者:Ying Han;P. Lahiri
- 通讯作者:Ying Han;P. Lahiri
A nested error regression model with high-dimensional parameter for small area estimation
一种用于小区域估计的高维参数嵌套误差回归模型
- DOI:10.1093/jrsssb/qkac010
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lahiri, Partha;Salvati, Nicola
- 通讯作者:Salvati, Nicola
Bayesian synthetic prediction of state level poverty using Indian Household Consumer Expenditure Survey Data1
使用印度家庭消费者支出调查数据对州级贫困进行贝叶斯综合预测1
- DOI:10.3233/sji-220965
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Das, Soumojit;Basu, Atanushasan;Lahiri, Partha;Sengupta, Shreya
- 通讯作者:Sengupta, Shreya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parthasarathi Lahiri其他文献
Vitamin B(12) deficiency and incontinence: is there an association?
维生素 B(12) 缺乏和失禁:有关联吗?
- DOI:
10.1093/gerona/57.9.m583 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
J. Endo;Shijie Chen;J. Potter;A. Ranno;Saira Asadullah;Parthasarathi Lahiri - 通讯作者:
Parthasarathi Lahiri
Parthasarathi Lahiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parthasarathi Lahiri', 18)}}的其他基金
International Travel Grant to Support U.S. Researchers to Attend the International Statistical Institute Satellite Meeting on Small Area Estimation
国际旅行补助金支持美国研究人员参加国际统计研究所小区域估算卫星会议
- 批准号:
1532741 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
On Area Specific Uncertainty Measures in Small Area Estimation
小区域估计中区域特定不确定性测度
- 批准号:
1534413 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Computation-driven small area inference with applications
协作研究:计算驱动的小区域推理与应用
- 批准号:
0851001 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Small-Area Estimation - A Growing Problem for the Next Millennium
协作研究:小区域估计 - 下一个千年日益严重的问题
- 批准号:
9978145 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Parametric Empirical Bayes Point and Interval Estimation in Small Area Estimation from Complex Surveys
复杂调查小区域估计中的参数经验贝叶斯点和区间估计
- 批准号:
9705574 - 财政年份:1997
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference on Current Topics in Survey Sampling
调查抽样当前主题会议
- 批准号:
9709916 - 财政年份:1997
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
U.S.-India Collaborative Research: Small-area Estimation Problems
美印合作研究:小区域估计问题
- 批准号:
9505197 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Empirical Bayes and Hierarchical Bayes Analysis of Small Area Means in Complex Surveys
复杂调查中小面积均值的经验贝叶斯和分层贝叶斯分析
- 批准号:
9511202 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Empirical and Hierarchical Bayes Methods in Small Area Estimation Problems
小区域估计问题中的经验和分层贝叶斯方法
- 批准号:
9206326 - 财政年份:1992
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Perceptions of the Other in Travelogues 1500-1875 - A Computerized Analysis
游记 1500-1875 中对他人的看法 - 计算机分析
- 批准号:
398697847 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Computerized Method of Kunten and Quantitative Analysis of Kunten Materials for Interpreted Text Generatio
用于口译文本生成的Kunten计算机化方法和Kunten材料的定量分析
- 批准号:
17K18506 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Requirement Analysis on Teaching Materials for Elementary Japanese-language Education in Highly Computerized Classroom Environment
高度电脑化课堂环境下初级日语教育教材需求分析
- 批准号:
16K12555 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Testing and improvement of a prototype application for lesion classification and data creation for computerized image analysis for lesion detection in multiple myeloma
测试和改进用于多发性骨髓瘤病变检测的计算机图像分析的病变分类和数据创建的原型应用程序
- 批准号:
286489910 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Collaborative Research: PCK*Lex: Applying Computerized Lexical Analysis to Develop a Cost-Effective Measure of Science Teacher Pedagogical Content Knowledge
合作研究:PCK*Lex:应用计算机词汇分析来开发科学教师教学内容知识的经济有效的衡量标准
- 批准号:
1437173 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of the system to assist diagnosis and treatment for disorder of facial movement utilizing computerized three dimensional analysis of facial expression based on video images
开发利用基于视频图像的计算机三维面部表情分析来辅助诊断和治疗面部运动障碍的系统
- 批准号:
26462736 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: PCK*Lex: Applying Computerized Lexical Analysis to Develop a Cost-Effective Measure of Science Teacher Pedagogical Content Knowledge
合作研究:PCK*Lex:应用计算机词汇分析来开发科学教师教学内容知识的经济有效的衡量标准
- 批准号:
1438739 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Computerized analysis and prediction of RNA structure and function
RNA结构和功能的计算机分析和预测
- 批准号:
170165-2009 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Computerized analysis and prediction of RNA structure and function
RNA结构和功能的计算机分析和预测
- 批准号:
170165-2009 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Development of the system to assist diagnosis, treatment and surgical planning for disorder of facial movement utilizing computerized analysis of facial expression based on video images
开发利用基于视频图像的面部表情计算机分析来辅助面部运动障碍的诊断、治疗和手术计划的系统
- 批准号:
23592657 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




