Multiple Recurrence and Convergence Along Polynomials in Ergodic Ramsey Theory

遍历拉姆齐理论中多项式的多重递推和收敛

基本信息

项目摘要

Abstract 9706057 Bergelson/Leibman This project will investigate problems of multiple recurrence and convergence with the emphasis on the behavior of dynamical systems along polynomials. The recurrence problems considered are tied to problems in combinatorial number theory and set theory and the results can be used to prove the existence of patterns with the conventional methods of classical analysis, combinatorics and number theory fail to discern. The PIs recently proved that the ergodic polynomial Szemeredi theorem extends to operators generating a nilpotent group. This naturally leads to more general questions and conjectures about multiple recurrence for nilpotent group actions. This grant is to fund the study of the long term behavior of dynamical systems and stochastic processes. Many important physical phenomena, as varied as the behavior of the stock market, lines in the supermarket, and data being received from a distant transmission source, exhibit locally erratic behavior which can be understood better by looking at the long term average behavior instead. The study of such stochastic processes and their connections with one another, as well as their connections in terms of their fine structure with other less random processes, is a central one in modern mathematics. It is only through such studies that we will be able to understand better and thus be able to control or predict the evolution of the physical phenomena which this mathematics can model.
[摘要]9706057 Bergelson/Leibman这个项目将研究多重递归性和收敛性问题,重点研究动力系统沿多项式的行为。所考虑的递归问题与组合数论和集合论中的问题联系在一起,其结果可以用来证明经典分析、组合学和数论的传统方法无法辨别的模式的存在性。pi最近证明了遍历多项式Szemeredi定理推广到生成幂零群的算子。这自然导致了关于幂零群作用的多重递归的更一般的问题和猜想。该基金用于研究动力系统和随机过程的长期行为。许多重要的物理现象,如股票市场的行为、超市里的排队、从远距离传输源接收的数据等,都表现出局部的不稳定行为,而通过观察长期平均行为可以更好地理解这种不稳定行为。研究这些随机过程及其相互之间的联系,以及它们的精细结构与其他不那么随机的过程之间的联系,是现代数学的一个核心问题。只有通过这样的研究,我们才能更好地理解,从而能够控制或预测数学可以模拟的物理现象的演变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vitaly Bergelson其他文献

Jointly ergodic measure-preserving transformations
  • DOI:
    10.1007/bf02760955
  • 发表时间:
    1984-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Daniel Berend;Vitaly Bergelson
  • 通讯作者:
    Vitaly Bergelson
Multiplicatively large sets and ergodic Ramsey theory
  • DOI:
    10.1007/bf02775431
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Vitaly Bergelson
  • 通讯作者:
    Vitaly Bergelson
Polynomial recurrence with large intersection over countable fields
  • DOI:
    10.1007/s11856-016-1346-1
  • 发表时间:
    2016-08-25
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Vitaly Bergelson;Donald Robertson
  • 通讯作者:
    Donald Robertson
Under- and over-independence in measure preserving systems
  • DOI:
    10.1007/s11856-020-1960-9
  • 发表时间:
    2020-01-17
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Terry Adams;Vitaly Bergelson;Wenbo Sun
  • 通讯作者:
    Wenbo Sun

Vitaly Bergelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vitaly Bergelson', 18)}}的其他基金

Dynamical systems on nilmanifolds, ultrafilters, and polynomial multiple correlation sequences
尼尔流形、超滤器和多项式多重相关序列的动力系统
  • 批准号:
    1500575
  • 财政年份:
    2015
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Continuing Grant
Applications of Ergodic Theory to Combinatorics and Number Theory
遍历理论在组合学和数论中的应用
  • 批准号:
    1162073
  • 财政年份:
    2012
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Continuing Grant
Ergodic Ramsey Theory and Polynomial Dynamics on Nilmanifolds
遍历拉姆齐理论和尼尔马流形多项式动力学
  • 批准号:
    0901106
  • 财政年份:
    2009
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Continuing Grant
Ergodic Ramsey Theory and Dynamical Systems on Nilmanifolds
遍历拉姆齐理论和尼尔马流形动力系统
  • 批准号:
    0600042
  • 财政年份:
    2006
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Continuing grant
Ergodic Ramsey Theory, Polynomials, and Actions of Nilpotent Groups
遍历拉姆齐理论、多项式和幂零群的作用
  • 批准号:
    0245350
  • 财政年份:
    2003
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
Polynomial ergodic theorems and Ramsey theory
多项式遍历定理和拉姆齐理论
  • 批准号:
    0070566
  • 财政年份:
    2000
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Recurrence, Convergence and Entropy in Ergodic Theory
数学科学:遍历理论中的递归、收敛和熵
  • 批准号:
    9401093
  • 财政年份:
    1994
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Conference on Convergence in ErgodicTheory and Probability
数学科学:遍历理论与概率收敛会议
  • 批准号:
    9215965
  • 财政年份:
    1992
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Recurrence, Averaging and Entropy in Ergodic Theory
数学科学:遍历理论中的递归、平均和熵
  • 批准号:
    9103056
  • 财政年份:
    1991
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Multiple Recurrence and Ergodic Ramsey Theory (Mathematical Sciences)
数学科学:多重递归和遍历拉姆齐理论(数学科学)
  • 批准号:
    8700842
  • 财政年份:
    1987
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Standard Grant

相似海外基金

Addressing fear of cancer recurrence in parents of pediatric cancer survivors: adapting the Fear Of Recurrence Therapy (FORT) for parents and establishing acceptability and feasibility.
解决儿科癌症幸存者父母对癌症复发的恐惧:为父母调整恐惧复发疗法(FORT)并建立可接受性和可行性。
  • 批准号:
    488491
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Operating Grants
Innovative smartphone psychotherapy targeting both fear of recurrence and persistent chronic pain after curative cancer resection
创新的智能手机心理疗法针对治愈性癌症切除术后复发的恐惧和持续的慢性疼痛
  • 批准号:
    23H01041
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
  • 批准号:
    10818726
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
Rethinking repurposing: Developing cryogel technology to address glioblastoma recurrence through year-long local delivery of repurposed therapeutics
重新思考重新利用:开发冷冻凝胶技术,通过为期一年的局部重新利用治疗方法来解决胶质母细胞瘤复发问题
  • 批准号:
    MR/Y008049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Research Grant
Creation of clinical ECRS disease concept and identification of its recurrence and refractory factors
临床ECRS疾病概念的创立及其复发及难治因素的识别
  • 批准号:
    23K15868
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Targeting polyploid cells to prevent cancer recurrence
靶向多倍体细胞预防癌症复发
  • 批准号:
    23K18238
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
RanDx an affordable highly sensitive predictive test for breast cancer recurrence and metastasis
RanDx 是一种经济实惠的高灵敏度乳腺癌复发和转移预测测试
  • 批准号:
    10036244
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Collaborative R&D
The Role of CD4+ Memory T cell Subtypes in Periodontal Disease Recurrence
CD4 记忆 T 细胞亚型在牙周病复发中的作用
  • 批准号:
    10642981
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
Addressing fear of cancer recurrence in parents of pediatric cancer survivors: adapting the Fear Of Recurrence Therapy (FORT) for parents and establishing acceptability and feasibility.
解决儿科癌症幸存者父母对癌症复发的恐惧:为父母调整恐惧复发疗法(FORT)并建立可接受性和可行性。
  • 批准号:
    484366
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Operating Grants
PREPARE for Cancer Surgery Trial: multimodal PReoperative Exercise to decrease PostoperAtive disability, cancer RecurrencE and mortality in older people with frailty
准备癌症手术试验:多模式术前锻炼可减少体弱老年人的术后残疾、癌症复发和死亡率
  • 批准号:
    483360
  • 财政年份:
    2023
  • 资助金额:
    $ 17.38万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了