Ergodic Ramsey Theory and Dynamical Systems on Nilmanifolds
遍历拉姆齐理论和尼尔马流形动力系统
基本信息
- 批准号:0600042
- 负责人:
- 金额:$ 24.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractThe project is focused on the problems of multiple recurrence and convergence in ergodic theory with emphasis on the connections with dynamical systems on nilmanifolds. The problems considered may be viewed as far reaching extensions of classical results. At the same time, these problems lead to strong applications of ergodic theory to combinatorics, number theory and algebra which are inaccessible, so far, by conventional methods. The polynomial Szemeredi theorem, the polynomial Hales-Jewett theorem and extensions thereof, obtained by the PIs in recent years, served as an impetus for further developments in the theory of multiple recurrence. These developments provide better understanding of the phenomenon of multiple recurrence along polynomials and bring new vistas of research to light. An interesting and important direction of research opened up by the polynomial results of the PIs is connected to the entrance of nilpotent groups into the picture. Not only are most of the familiar results dealing with commutative groups naturally extendible to the nilpotent setup, but also it turns out that nilpotent dynamics allows one to get new information about convergence/recurrence properties of one parameter groups of measure preserving transformations. The related conjectures formulated in the proposal shed new light on the connections of nilpotent dynamics with important problems of ergodic theory, combinatorics and uniform distribution.The problems and conjectures that are posed in the proposal connect diverse areas of mathematics (ergodic theory, combinatorics, number theory) and contribute to each. The proposed study aims at better understanding of the regularity of the behavior of dynamical systems sampled at moments of time corresponding to values of polynomial (and more general) functions. While the proposal focuses on strong applications of this phenomenon in combinatorics and number theory, it may be of interest to a physicist as well. For example, one of the corollaries of the theory of multiple recurrence is that measuring the status of a physical system along polynomial (rather than linear) instances of time reveals quite a lot about the system.
摘要本课题主要研究遍历理论中的多重递归性和收敛性问题,重点研究了与零流形上的动力系统的联系。所考虑的问题可以看作是经典结果的深远扩展。同时,这些问题也使得遍历理论在组合学、数论和代数中得到了广泛的应用,这是迄今为止传统方法所无法达到的。近年来pi们得到的多项式Szemeredi定理、多项式Hales-Jewett定理及其推广,推动了多次递归理论的进一步发展。这些发展提供了对多项式多次递归现象的更好理解,并带来了新的研究前景。幂零群的引入与pi的多项式结果开辟了一个有趣而重要的研究方向。我们所熟悉的处理交换群的结果不仅可以自然地推广到幂零设置,而且幂零动力学允许我们得到关于保测度变换的单参数群的收敛/递归性质的新信息。文中提出的相关猜想为幂零动力学与遍历理论、组合学和均匀分布等重要问题的联系提供了新的线索。提案中提出的问题和猜想连接了数学的不同领域(遍历论、组合学、数论),并对每个领域都有所贡献。提出的研究旨在更好地理解在多项式(和更一般)函数值对应的时刻采样的动力系统行为的规律性。虽然该提案侧重于这种现象在组合学和数论中的强大应用,但物理学家也可能对此感兴趣。例如,多重递归理论的一个推论是,沿着多项式(而不是线性)的时间实例测量物理系统的状态可以揭示系统的很多信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vitaly Bergelson其他文献
Jointly ergodic measure-preserving transformations
- DOI:
10.1007/bf02760955 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Daniel Berend;Vitaly Bergelson - 通讯作者:
Vitaly Bergelson
Multiplicative richness of additively large sets in <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math>
- DOI:
10.1016/j.jalgebra.2018.01.032 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:
- 作者:
Vitaly Bergelson;Daniel Glasscock - 通讯作者:
Daniel Glasscock
Multiplicatively large sets and ergodic Ramsey theory
- DOI:
10.1007/bf02775431 - 发表时间:
2005-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Vitaly Bergelson - 通讯作者:
Vitaly Bergelson
Polynomial recurrence with large intersection over countable fields
- DOI:
10.1007/s11856-016-1346-1 - 发表时间:
2016-08-25 - 期刊:
- 影响因子:0.800
- 作者:
Vitaly Bergelson;Donald Robertson - 通讯作者:
Donald Robertson
Under- and over-independence in measure preserving systems
- DOI:
10.1007/s11856-020-1960-9 - 发表时间:
2020-01-17 - 期刊:
- 影响因子:0.800
- 作者:
Terry Adams;Vitaly Bergelson;Wenbo Sun - 通讯作者:
Wenbo Sun
Vitaly Bergelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vitaly Bergelson', 18)}}的其他基金
Dynamical systems on nilmanifolds, ultrafilters, and polynomial multiple correlation sequences
尼尔流形、超滤器和多项式多重相关序列的动力系统
- 批准号:
1500575 - 财政年份:2015
- 资助金额:
$ 24.49万 - 项目类别:
Continuing Grant
Applications of Ergodic Theory to Combinatorics and Number Theory
遍历理论在组合学和数论中的应用
- 批准号:
1162073 - 财政年份:2012
- 资助金额:
$ 24.49万 - 项目类别:
Continuing Grant
Ergodic Ramsey Theory and Polynomial Dynamics on Nilmanifolds
遍历拉姆齐理论和尼尔马流形多项式动力学
- 批准号:
0901106 - 财政年份:2009
- 资助金额:
$ 24.49万 - 项目类别:
Continuing Grant
Ergodic Ramsey Theory, Polynomials, and Actions of Nilpotent Groups
遍历拉姆齐理论、多项式和幂零群的作用
- 批准号:
0245350 - 财政年份:2003
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
Polynomial ergodic theorems and Ramsey theory
多项式遍历定理和拉姆齐理论
- 批准号:
0070566 - 财政年份:2000
- 资助金额:
$ 24.49万 - 项目类别:
Continuing grant
Multiple Recurrence and Convergence Along Polynomials in Ergodic Ramsey Theory
遍历拉姆齐理论中多项式的多重递推和收敛
- 批准号:
9706057 - 财政年份:1997
- 资助金额:
$ 24.49万 - 项目类别:
Continuing grant
Mathematical Sciences: Recurrence, Convergence and Entropy in Ergodic Theory
数学科学:遍历理论中的递归、收敛和熵
- 批准号:
9401093 - 财政年份:1994
- 资助金额:
$ 24.49万 - 项目类别:
Continuing grant
Mathematical Sciences: Conference on Convergence in ErgodicTheory and Probability
数学科学:遍历理论与概率收敛会议
- 批准号:
9215965 - 财政年份:1992
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
Mathematical Sciences: Recurrence, Averaging and Entropy in Ergodic Theory
数学科学:遍历理论中的递归、平均和熵
- 批准号:
9103056 - 财政年份:1991
- 资助金额:
$ 24.49万 - 项目类别:
Continuing grant
Mathematical Sciences: Multiple Recurrence and Ergodic Ramsey Theory (Mathematical Sciences)
数学科学:多重递归和遍历拉姆齐理论(数学科学)
- 批准号:
8700842 - 财政年份:1987
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
相似国自然基金
图与超图中的Turán问题与Ramsey问题
- 批准号:2025JJ30003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
图的Turán型及Ramsey-Turán型问题研究
- 批准号:JCZRYB202500548
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Gallai-Ramsey 理论在偏序集和几何中的研究
- 批准号:Q24A010014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ramsey图剩余子图极值问题的研究
- 批准号:12301451
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
温度自补偿—异型Ramsey腔及其在小型冷原子微波钟的应用基础研究
- 批准号:12303074
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
若干Ramsey和Gallai-Ramsey问题研究
- 批准号:12301458
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ramsey理论中的几个问题和正则性方法
- 批准号:2022J02018
- 批准年份:2022
- 资助金额:40.0 万元
- 项目类别:省市级项目
若干图类的Ramsey型问题的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ramsey-Turan若干问题高级研讨班
- 批准号:12226401
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
有关Ramsey数和Turán数的一些极值问题
- 批准号:12161141003
- 批准年份:2021
- 资助金额:200 万元
- 项目类别:
相似海外基金
Interplay between Ergodic Theory, Additive Combinatorics and Ramsey Theory
遍历理论、加法组合学和拉姆齐理论之间的相互作用
- 批准号:
DP240100472 - 财政年份:2024
- 资助金额:
$ 24.49万 - 项目类别:
Discovery Projects
The search for ergodic Ramsey theory and Erdős conjecture toward the construction of infinite ergodic theory
探索遍历 Ramsey 理论和 Erd
- 批准号:
20K03642 - 财政年份:2020
- 资助金额:
$ 24.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
- 批准号:
1340666 - 财政年份:2012
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
- 批准号:
1157580 - 财政年份:2011
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
- 批准号:
1001528 - 财政年份:2010
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
Ergodic Ramsey Theory and Polynomial Dynamics on Nilmanifolds
遍历拉姆齐理论和尼尔马流形多项式动力学
- 批准号:
0901106 - 财政年份:2009
- 资助金额:
$ 24.49万 - 项目类别:
Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Ergodic Ramsey Theory: A Dynamical Approach to Static Theorems - Summer 2008
NSF/CBMS 数学科学区域会议 - 遍历拉姆齐理论:静态定理的动态方法 - 2008 年夏季
- 批准号:
0735307 - 财政年份:2008
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
Ergodic Ramsey Theory, Polynomials, and Actions of Nilpotent Groups
遍历拉姆齐理论、多项式和幂零群的作用
- 批准号:
0245350 - 财政年份:2003
- 资助金额:
$ 24.49万 - 项目类别:
Standard Grant
Polynomial ergodic theorems and Ramsey theory
多项式遍历定理和拉姆齐理论
- 批准号:
0070566 - 财政年份:2000
- 资助金额:
$ 24.49万 - 项目类别:
Continuing grant
Multiple Recurrence and Convergence Along Polynomials in Ergodic Ramsey Theory
遍历拉姆齐理论中多项式的多重递推和收敛
- 批准号:
9706057 - 财政年份:1997
- 资助金额:
$ 24.49万 - 项目类别:
Continuing grant