Polynomial ergodic theorems and Ramsey theory
多项式遍历定理和拉姆齐理论
基本信息
- 批准号:0070566
- 负责人:
- 金额:$ 17.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT:The project concentrates on multiple recurrence and convergence indynamical systems with a focus on polynomial actions of abelian andnilpotent groups. The problems considered lead to diverse applications ofergodic theory to combinatorics, number theory and algebra which areinaccessible so far by conventional methods. The polynomial Szemeredi andHales-Jewett theorems proved by the proposers in the recent years havesince been extended by the proposers and their colleagues in differentdirections, each providing a better understanding of the phenomenon ofmultiple recurrence along polynomials and offering new vistas of research.The directions of study touched upon in this proposal include(but are not limited to) the deeper study of multiple recurrence fornilpotent group actions and the investigation of polynomial multiplerecurrence in the framework of IP-systems. Another interesting areaconsidered in this proposal has to do with convergence of ergodic averagesnaturally appearing in the theory of multiple recurrence and itsapplications. The results recently obtained by the proposers indicate adichotomy between the behavior of ergodic averages depending on whetherthe acting groups have polynomial or exponential growth. Therelated conjectures formulated in the last section of the proposal areshedding new light on these questions. The theory of multiple recurrence that we focus on in this project usesthe ideas from several diverse areas of mathematics and aims to advanceour knowledge about the intrinsic properties of dynamical systems whichare related to their long range behavior. An example of a highlynontrivial fact stemming from our investigations is the regularity of thebehavior of dynamical systems along polynomial time measurements. Thisfact, in its turn, has strong applications to seemingly distant areas ofnumber theory and combinatorics.
摘要:本项目主要研究动力系统的多重递归和收敛性,重点是阿贝尔群和幂零群的多项式作用。考虑的问题导致不同的应用ofergodic理论的组合,数论和代数arenaccessible迄今为止的传统方法。多项式Szemeredi定理和Hales-Jewett定理近年来被提出者证明,此后被提出者及其同事从不同的方向推广,每一个都提供了对沿沿着多项式多次递归现象的更好理解,并提供了新的研究前景。本建议涉及的研究方向包括(但不限于)幂零群作用的多重常返性的深入研究以及在IP-系统框架下对多项式多重常返性的研究。另一个有趣的领域,在这个建议中所考虑的是与遍历平均的收敛性,自然出现在多重递归理论及其应用。最近得到的结果的提议者表明adichotomy行为的遍历平均依赖于whitheracting集团有多项式或指数增长。提案最后一节中提出的有关建议对这些问题提出了新的看法。 我们在这个项目中关注的多重递归理论使用了来自数学的几个不同领域的思想,旨在提高我们对动力系统的内在性质的认识,这些性质与它们的长程行为有关。一个例子,一个高度非平凡的事实源于我们的调查是规则性的行为的动力系统沿着多项式时间的测量。反过来,这个事实在数论和组合学看似遥远的领域也有很强的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vitaly Bergelson其他文献
Jointly ergodic measure-preserving transformations
- DOI:
10.1007/bf02760955 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Daniel Berend;Vitaly Bergelson - 通讯作者:
Vitaly Bergelson
Multiplicative richness of additively large sets in <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math>
- DOI:
10.1016/j.jalgebra.2018.01.032 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:
- 作者:
Vitaly Bergelson;Daniel Glasscock - 通讯作者:
Daniel Glasscock
Multiplicatively large sets and ergodic Ramsey theory
- DOI:
10.1007/bf02775431 - 发表时间:
2005-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Vitaly Bergelson - 通讯作者:
Vitaly Bergelson
Polynomial recurrence with large intersection over countable fields
- DOI:
10.1007/s11856-016-1346-1 - 发表时间:
2016-08-25 - 期刊:
- 影响因子:0.800
- 作者:
Vitaly Bergelson;Donald Robertson - 通讯作者:
Donald Robertson
Multiple ergodic averages along functions from a Hardy field: Convergence, recurrence and combinatorial applications
沿着来自哈代域的函数的多重遍历平均:收敛性、递归性和组合应用
- DOI:
10.1016/j.aim.2024.109597 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:1.500
- 作者:
Vitaly Bergelson;Joel Moreira;Florian K. Richter - 通讯作者:
Florian K. Richter
Vitaly Bergelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vitaly Bergelson', 18)}}的其他基金
Dynamical systems on nilmanifolds, ultrafilters, and polynomial multiple correlation sequences
尼尔流形、超滤器和多项式多重相关序列的动力系统
- 批准号:
1500575 - 财政年份:2015
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Applications of Ergodic Theory to Combinatorics and Number Theory
遍历理论在组合学和数论中的应用
- 批准号:
1162073 - 财政年份:2012
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Ergodic Ramsey Theory and Polynomial Dynamics on Nilmanifolds
遍历拉姆齐理论和尼尔马流形多项式动力学
- 批准号:
0901106 - 财政年份:2009
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Ergodic Ramsey Theory and Dynamical Systems on Nilmanifolds
遍历拉姆齐理论和尼尔马流形动力系统
- 批准号:
0600042 - 财政年份:2006
- 资助金额:
$ 17.24万 - 项目类别:
Continuing grant
Ergodic Ramsey Theory, Polynomials, and Actions of Nilpotent Groups
遍历拉姆齐理论、多项式和幂零群的作用
- 批准号:
0245350 - 财政年份:2003
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Multiple Recurrence and Convergence Along Polynomials in Ergodic Ramsey Theory
遍历拉姆齐理论中多项式的多重递推和收敛
- 批准号:
9706057 - 财政年份:1997
- 资助金额:
$ 17.24万 - 项目类别:
Continuing grant
Mathematical Sciences: Recurrence, Convergence and Entropy in Ergodic Theory
数学科学:遍历理论中的递归、收敛和熵
- 批准号:
9401093 - 财政年份:1994
- 资助金额:
$ 17.24万 - 项目类别:
Continuing grant
Mathematical Sciences: Conference on Convergence in ErgodicTheory and Probability
数学科学:遍历理论与概率收敛会议
- 批准号:
9215965 - 财政年份:1992
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Mathematical Sciences: Recurrence, Averaging and Entropy in Ergodic Theory
数学科学:遍历理论中的递归、平均和熵
- 批准号:
9103056 - 财政年份:1991
- 资助金额:
$ 17.24万 - 项目类别:
Continuing grant
Mathematical Sciences: Multiple Recurrence and Ergodic Ramsey Theory (Mathematical Sciences)
数学科学:多重递归和遍历拉姆齐理论(数学科学)
- 批准号:
8700842 - 财政年份:1987
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
相似国自然基金
微分动力系统的测度和熵
- 批准号:11101447
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
有理函数动力系统的一些研究
- 批准号:10926028
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
微分遍历理论和廖山涛的一些方法的应用
- 批准号:10671006
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
The study of various kinds of limit theorems arising from ergodic-theoretical behaviors of dynamical systems
由动力系统的遍历理论行为引起的各种极限定理的研究
- 批准号:
17H02850 - 财政年份:2017
- 资助金额:
$ 17.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Long range dependence: The effect of infinite ergodic theoretical structures on limit theorems in probability
长程依赖性:无限遍历理论结构对概率极限定理的影响
- 批准号:
1506783 - 财政年份:2015
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Relation between hyperbolic structure of partially hyperbolic systems and ergodic limit theorems
部分双曲系统的双曲结构与遍历极限定理之间的关系
- 批准号:
23740136 - 财政年份:2011
- 资助金额:
$ 17.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
NSF/CBMS Regional Conference in the Mathematical Sciences - Ergodic Ramsey Theory: A Dynamical Approach to Static Theorems - Summer 2008
NSF/CBMS 数学科学区域会议 - 遍历拉姆齐理论:静态定理的动态方法 - 2008 年夏季
- 批准号:
0735307 - 财政年份:2008
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Discrete Problems in Harmonic Analysis, Ergodic Theorems and Singularities
调和分析、遍历定理和奇点中的离散问题
- 批准号:
0202021 - 财政年份:2002
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Limit Theorems and Statistical Inference for Ergodic Processes
遍历过程的极限定理和统计推断
- 批准号:
0102268 - 财政年份:2001
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Quantitative and Subsequence Ergodic Theorems
定量和后续遍历定理
- 批准号:
0100577 - 财政年份:2001
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant