Operator Theory and Free Harmonic Analysis
算子理论与自由谐波分析
基本信息
- 批准号:9706557
- 负责人:
- 金额:$ 8.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Bercovici Hari Bercovici plans to work in two basic directions. The first is related with Voiculescu's free probability theory and harmonic analysis. An important direction here is the sudy of limit laws for the multiplicative free convolution. Unlike classical harmonic analysis, the study of multiplicative convolution cannot simply be reduced to the additive case by taking logarithms. It is already known that there are some unexpected `Poisson like' probability distributions related with multiplicative free convolution. An important obstacle is the correct formulation of the classical limit theorems, even the central limit theorem, in the free multiplicative case. The second line of Bercovici's research is in operator theory and its interactions with function theory, control theory, and other areas. Among the specific problems in this area are the model theories of restrictions and compressions of operators, and the study of dual algebras generated by commuting families of operators. He also plans to return to the study of skew Toeplitz operators beyond the fairly well understood scalar case. In order to give some motivation for the research in this proposal I would like to recall that in the current description of subatomic processes one has to deal with probabilistic processes. Thus, for instance, the location of a particle is not known with precision at any given moment. One has instead the probability that that particle appears in a given region of space. Some versions of noncommutative probability theory deal with some of the aspects of quantum chemistry for instance. Free probability theory is likely to occur at some point in the quantum description of nature. Besides, it is an interesting object of study because it provides, in some sense, the `only' alternative probability theory. The operator theoretical part of this project stems to a great extent from problems raised by the control theory of large structures. Some earlier results in this theory were proposed a s the main control mechanism of the NASP. While Bercovici's expertise in the practical side of this theory is limited, control theorists can formulate their problems in theoretical terms, thus making the application of operator theoretical methods possible.
抽象的贝尔科维奇 Hari Bercovici计划在两个基本方向上工作。第一个是Voiculescu的自由概率论和谐波分析。本文的一个重要方向是研究乘性自由卷积的极限律。与经典的调和分析不同,乘性卷积的研究不能简单地通过计算简化为加性卷积。众所周知,有一些意想不到的“泊松样”概率分布与乘法自由卷积。一个重要的障碍是经典极限定理的正确表述,甚至是中心极限定理,在自由乘法的情况下。 Bercovici的第二条研究路线是算子理论及其与函数论、控制论和其他领域的相互作用。 在这一领域的具体问题是模型理论的限制和压缩的运营商,并研究对偶代数所产生的交换家庭的运营商。他还计划回到研究斜Toeplitz算子超出了相当好的理解 标量情形 为了给一些动机的研究在这个建议中,我想回顾一下,在目前的描述亚原子过程中,一个必须处理的概率过程。因此,例如,在任何给定时刻,粒子的位置都不是精确的。相反,我们有这个粒子出现在给定空间区域的概率。 非对易概率论的某些版本涉及量子化学的某些方面。 自由概率论很可能出现在对自然的量子描述中的某个时刻。 此外,它是一个有趣的研究对象,因为它提供了,在某种意义上,“唯一的”替代概率理论。 这个项目的算子理论部分在很大程度上源于大型结构的控制理论所提出的问题。该理论的一些早期结果被认为是NASP的主要控制机制。 虽然Bercovici的专业知识在这一理论的实际方面是有限的,控制理论家可以制定他们的问题在理论方面,从而使应用运营商的理论方法成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hari Bercovici其他文献
A note on composition operators in a half-plane
- DOI:
10.1007/s00013-012-0450-7 - 发表时间:
2012-11-22 - 期刊:
- 影响因子:0.500
- 作者:
Hari Bercovici;Dan Timotin - 通讯作者:
Dan Timotin
Dilation theory and systems of simultaneous equations in the predual of an operator algebra. II
- DOI:
10.1007/bf01163170 - 发表时间:
1984-03-01 - 期刊:
- 影响因子:1.000
- 作者:
Hari Bercovici;Bernard Chevreau;Ciprian Foias;Carl Pearcy - 通讯作者:
Carl Pearcy
Perturbation of orthonormal bases with an application to diagonalization
- DOI:
10.1007/bf01193675 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Hari Bercovici;Stoyko Kostov - 通讯作者:
Stoyko Kostov
A Question About Invariant Subspaces and Factorization
- DOI:
10.1007/s11785-021-01183-7 - 发表时间:
2022-03-05 - 期刊:
- 影响因子:0.800
- 作者:
Hari Bercovici;Wing Suet Li - 通讯作者:
Wing Suet Li
Functions of regular variation and freely stable laws
- DOI:
10.1007/bf02505898 - 发表时间:
2000-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Hari Bercovici;Vittorino Pata - 通讯作者:
Vittorino Pata
Hari Bercovici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hari Bercovici', 18)}}的其他基金
Finite Factors, Free Probability, and Combinatorics in Operator Theory
算子理论中的有限因子、自由概率和组合学
- 批准号:
1362954 - 财政年份:2014
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Finite Factors, Operators, and Free Probability
有限因素、算子和自由概率
- 批准号:
1065946 - 财政年份:2011
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Operator Theory, Free Probability, and Related Problems
算子理论、自由概率及相关问题
- 批准号:
0307166 - 财政年份:2003
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Operator Theory, Free Harmonic Analysis, and Related Problems
算子理论、自由谐波分析及相关问题
- 批准号:
0070459 - 财政年份:2000
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Theory and Noncommutative Harmonic Analysis
数学科学:算子理论和非交换调和分析
- 批准号:
9401380 - 财政年份:1994
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Operator Theory and Related Areas
数学科学:算子理论及相关领域的问题
- 批准号:
9101372 - 财政年份:1991
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Operator Theory and Nonselfadjoint Operator Algebras
数学科学:算子理论和非自共轭算子代数问题
- 批准号:
8802417 - 财政年份:1988
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Presidential Young Investigator
数学科学:总统青年研究员
- 批准号:
8858149 - 财政年份:1988
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Structure of Dual Algebras and Linear Operators
数学科学:对偶代数和线性算子的结构
- 批准号:
8521683 - 财政年份:1986
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory
自由分析:探索算子理论与非交换函数论之间的相互作用
- 批准号:
2154494 - 财政年份:2022
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
Operator Algebras, Operator Theory and Free Probability Investigations
算子代数、算子理论和自由概率研究
- 批准号:
1665534 - 财政年份:2017
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2017
- 资助金额:
$ 8.5万 - 项目类别:
Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2015
- 资助金额:
$ 8.5万 - 项目类别:
Discovery Grants Program - Individual
Finite Factors, Free Probability, and Combinatorics in Operator Theory
算子理论中的有限因子、自由概率和组合学
- 批准号:
1362954 - 财政年份:2014
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2014
- 资助金额:
$ 8.5万 - 项目类别:
Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2013
- 资助金额:
$ 8.5万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Multivariable Operator Theory and Free Holomorphic Functions
非交换多变量算子理论和自由全纯函数
- 批准号:
1067402 - 财政年份:2011
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
Free Probability Theory and its Applications in Operator Algebras
自由概率论及其在算子代数中的应用
- 批准号:
0901344 - 财政年份:2009
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
Operator Theory, Free Probability, and Related Problems
算子理论、自由概率及相关问题
- 批准号:
0307166 - 财政年份:2003
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant