Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory

自由分析:探索算子理论与非交换函数论之间的相互作用

基本信息

  • 批准号:
    2154494
  • 负责人:
  • 金额:
    $ 36.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project belongs to the branches of mathematical analysis known as Operator Theory and Functional Analysis. These subjects were developed initially in the early part of the 20th century as part of the development of the mathematical foundations of quantum mechanics. These ideas have subsequently evolved in many unexpected directions, far from their original source, with applications not only in physics (such as the currently very active areas of quantum computing and quantum information theory), but also in electrical and mechanical engineering (where these ideas are applied in the design of automatic control systems, in signal and image processing), and even artificial intelligence and machine learning. A particularly new and exciting branch of this field is known as “noncommutative function theory” which has its origins in the study of certain kinds of optimization questions in engineering, but has grown to take on a life of its own. The adjacent area of “multivariable operator theory” is multi-faceted but is closely connected with many questions arising in these applications (such as the study of quantum channels, and the theory of “linear matrix inequalities” in optimization). The project is aimed at expanding the array of mathematical tools available for the study of these questions, and at deepening our understanding of the interplay between these diverse mathematical ideas. The project further will integrate research and education, and professional development of junior researchers. A “Math Circle” program at a local school is to be carried out.The project will employ a blend of techniques from operator theory (especially in several variables), functional analysis, and complex analysis to study the interrelation between operator theory and the rapidly developing field of "free analysis" or "noncommutative" function theory. These recent, rapid developments have made new tools available to the study of some basic questions in mathematical analysis and have already found applications to diverse areas of mathematics, including optimization theory, convex analysis, and quantum information theory. The goal of joint work with graduate students is to apply these new methods to questions at the intersection of functional analysis and complex function theory, particularly the study of function-theoretic operator theory in "noncommutative" domains, including questions about factorizations, zero sets, and realization theory for noncommutative rational functions. The project will draw on techniques from several currently active areas of mathematical analysis, with the aim of broadening and deepening our understanding of the interplay between function theory, operator theory, and complex analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目属于数学分析的分支,即算子论和泛函分析。这些学科最初是在20世纪初作为量子力学数学基础发展的一部分而发展起来的。这些想法后来在许多意想不到的方向上发展起来,远离了最初的来源,不仅应用于物理学(例如目前非常活跃的量子计算和量子信息理论领域),还应用于电气和机械工程(这些想法应用于自动控制系统的设计、信号和图像处理),甚至人工智能和机器学习。这个领域的一个特别新的和令人兴奋的分支被称为“非对易函数理论”,它起源于对工程中某些类型的优化问题的研究,但已经成长为自己的生命力。“多变量算符理论”的邻近领域是多方面的,但与这些应用中出现的许多问题(如量子通道的研究和最优化中的“线性矩阵不等式”理论)密切相关。该项目的目的是扩大可用于研究这些问题的数学工具的范围,并加深我们对这些不同数学思想之间相互作用的理解。该项目将进一步整合研究和教育,以及初级研究人员的专业发展。将在当地一所学校开展“数学圈”项目。该项目将综合运用算子论(特别是多变量)、泛函分析和复分析的技术,研究算子论与迅速发展的“自由分析”或“非对易”函数论领域的相互关系。这些最新的快速发展为研究数学分析中的一些基本问题提供了新的工具,并已在数学的各个领域找到了应用,包括最优化理论、凸分析和量子信息理论。与研究生共同工作的目的是将这些新方法应用于泛函分析和复函数论的交叉问题,特别是“非对易”区域中的函数论算子理论的研究,包括非对易有理函数的因式分解、零集和实现理论的问题。该项目将借鉴几个目前活跃的数学分析领域的技术,目的是扩大和加深我们对函数论、算子理论和复杂分析之间相互作用的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Jury其他文献

Michael Jury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Jury', 18)}}的其他基金

The 38th Southeastern Analysis Meeting (SEAM)
第38届东南分析会议(SEAM)
  • 批准号:
    2154455
  • 财政年份:
    2022
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Standard Grant
Multivariable Operator Theory: The Interplay between Function Theory, Operator Theory and Operator Algebras
多变量算子理论:函数论、算子理论和算子代数之间的相互作用
  • 批准号:
    1900364
  • 财政年份:
    2019
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Standard Grant
Topics in multivariable operator theory
多变量算子理论主题
  • 批准号:
    1101461
  • 财政年份:
    2011
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Standard Grant
Topics in Composition Operators
组合运算符主题
  • 批准号:
    0701268
  • 财政年份:
    2007
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
  • 批准号:
    24K21025
  • 财政年份:
    2024
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring the Deep Universe by Computational Analysis of Data from Observations
通过观测数据的计算分析探索宇宙深处
  • 批准号:
    EP/Y031032/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Research Grant
Exploring Nucleic Acid Aptamer Science through Electrophoretic Analysis
通过电泳分析探索核酸适体科学
  • 批准号:
    23H01991
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploring the origins of root-nodule symbiosis: Functional analysis of rhizobial effectors governing primitive rhizobial symbiosis
探索根瘤共生的起源:控制原始根瘤菌共生的根瘤菌效应子的功能分析
  • 批准号:
    23KK0108
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Exploring the developmental process of cerebral arteriovenous malformations: integrated analysis of clinical specimens and animal models
探索脑动静脉畸形的发育过程:临床标本与动物模型的综合分析
  • 批准号:
    23K15642
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Exploring various subgrid scale turbulence models via convergence analysis, data assimilation and deep learning
LEAPS-MPS:通过收敛分析、数据同化和深度学习探索各种亚网格尺度湍流模型
  • 批准号:
    2316894
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Standard Grant
Exploring the Structure near Black Holes using Millisecond Timing, Spectral X-Ray Observations, and Advanced Data Analysis Techniques
使用毫秒定时、光谱 X 射线观测和高级数据分析技术探索黑洞附近的结构
  • 批准号:
    22KJ1431
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Justice 2.0: exploring the experience of justice in the digital age. A comparative analysis of the UK, Brazil and Argentina.
正义2.0:探索数字时代的正义体验。
  • 批准号:
    2890800
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Studentship
Psychosocial Interventions to Improve Postsecondary Student Mathematics Attainment: A Meta-Analysis Exploring What Works and for Whom
提高专上学生数学成绩的社会心理干预措施:探索什么有效以及适用于谁的荟萃分析
  • 批准号:
    2300030
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Standard Grant
Exploring Physics in the Strong Gravity through a Novel Gravitational Wave Data Analysis Method
通过新颖的引力波数据分析方法探索强引力中的物理
  • 批准号:
    23KJ0694
  • 财政年份:
    2023
  • 资助金额:
    $ 36.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了