Free Probability Theory and its Applications in Operator Algebras
自由概率论及其在算子代数中的应用
基本信息
- 批准号:0901344
- 负责人:
- 金额:$ 13.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2012-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractShenThe PI will apply Voiculescu?s "non-commutative" (or "free") probability theory to the subject of operator algebras, which includes von Neumann algebras and C*-algebras. The study of operator algebras is often viewed as the study of "non-commutative measure theory" or ?non-commutative geometry?. Over the last seventy years, this has turned out to be a rich and fertile field of study. Non-commutative probability theory (or free probability theory) in the context of non-commutative measure spaces was developed by D. Voiculescu in the 1980's. Several important problems in the area of operator algebras were solved by the tools from non-commutative probability theory. In this project, the PI wishes to further develop free probability theory; with a view to attacking other problems in the area of operator algebras. In particular, he will study Voiculescu?s topological free entropy theory for unital C*-algebras; to search C*-algebras whose BDF-extension semigroups are not groups; to compute Voiculescu?s free entropy dimension for more finite von Neumann algebras; and to study the generator problems for von Neumann algebras.The theory of operator algebras was introduced to obtain a more rigorous mathematical formulation of the basics of quantum mechanics. From a probabilistic point view, free probability theory has surprising applications in the area of operator algebras. This project aims to develop new tools in free probability theory aiming at problems in the area operator algebras. The solutions to these problems will provide us with new ways to classify von Neumann algebras and C* algebras. The significance of the project lies in the fact that new developments in the theory of free probability and operator algebras have always had profound applications to several fields in mathematics and physics such as statistics and quantum mechanics. Intellectual Merit of the Proposed Activities: The project is the continuation of principal investigator's prior work in free probability theory, in BDF-extension semigroups, and in generator problem of von Neumann algebras. Broader Impact of the Proposed Activities: The project will take place at a location that strengthens the broader impacts of research development in the University of New Hampshire. The research group of Operator Algebra and Operator Theory in the University of New Hampshire consists of several well-established mathematicians. Summer support for graduate students will help graduate students to learn the subjects.This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5.
沈阳等人将把伏尔库列斯库·S的“非对易”(或“自由”)概率论应用于算子代数的研究,包括冯·诺依曼代数和C~*-代数。算子代数的研究通常被视为“非交换测度论”或“非交换几何”的研究。在过去的70年里,这被证明是一个丰富多彩的研究领域。非对易度量空间中的非对易概率论(或称自由概率论)是由D·沃库列斯库在20世纪80年代末由S发展起来的,用非对易概率论的工具解决了算子代数领域中的几个重要问题。在这个项目中,PI希望进一步发展自由概率理论,以期解决算子代数领域的其他问题。特别是,他将研究单位C*-代数的Vocerescu?S拓扑自由熵理论;寻找BDF-扩张半群不是群的C*-代数;计算更有限的von Neumann代数的Voulescu?S自由熵维度;研究von Neumann代数的生成元问题。引入算符代数理论,得到量子力学基本知识的更严格的数学表述。从概率的角度来看,自由概率理论在算子代数领域有着惊人的应用。这个项目旨在开发自由概率理论中的新工具,以解决面积算子代数中的问题。这些问题的解决将为我们分类von Neumann代数和C*代数提供新的途径。该项目的意义在于,自由概率理论和算子代数的新发展一直在统计学和量子力学等数学和物理领域有着深刻的应用。拟议活动的智力价值:该项目是主要研究人员在自由概率论、BDF-扩张半群和von Neumann代数的生成元问题方面先前工作的继续。拟议活动的更广泛影响:该项目将在新汉普郡大学加强研究发展的更广泛影响的地点进行。新汉普郡大学的算子代数和算子理论研究小组由几位著名的数学家组成。对研究生的暑期支持将帮助研究生学习这些科目。该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junhao Shen其他文献
Further insight into the formation and oxidation of CaCr2O4 during solid fuel combustion
进一步深入了解固体燃料燃烧过程中 CaCr2O4 的形成和氧化
- DOI:
10.1021/acs.est.7b05538 - 发表时间:
2018 - 期刊:
- 影响因子:11.4
- 作者:
Hongyun Hu;Mengya Shi;Yuhan Yang;Huan Liu;Mian Xu;Junhao Shen;Hong Yao - 通讯作者:
Hong Yao
Multi-segmented tube design and multi-objective optimization of deep coaxial borehole heat exchanger
- DOI:
10.1016/j.renene.2024.121494 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Yongqiang Luo;Junhao Shen;Yixiao Song;Qingyuan Liu;Fulei Huo;Zhanpeng Chu;Zhiyong Tian;Jianhua Fan;Ling Zhang;Aihua Liu - 通讯作者:
Aihua Liu
Relative commutant of an unbounded operator affiliated with a finite von Neumann algebra
隶属于有限冯诺依曼代数的无界算子的相对交换子
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0.8
- 作者:
Don Hadwin;Junhao Shen;吴文明;Wei Yuan - 通讯作者:
Wei Yuan
A generalization of Voiculescu's theorem for normal operators to semifinite von Neumann algebras
将正规算子的 Voiculescu 定理推广到半有限冯·诺依曼代数
- DOI:
10.1016/j.aim.2020.107347 - 发表时间:
2020 - 期刊:
- 影响因子:1.7
- 作者:
Qihui Li;Junhao Shen;Rui Shi - 通讯作者:
Rui Shi
Recent developments in anammox-based membrane bioreactors: A review
基于厌氧氨氧化的膜生物反应器的最新进展:综述
- DOI:
10.1016/j.scitotenv.2022.159539 - 发表时间:
2023-01-20 - 期刊:
- 影响因子:8.000
- 作者:
Fuqiang Chen;Yunzhi Qian;Hui Cheng;Junhao Shen;Yu Qin;Yu-You Li - 通讯作者:
Yu-You Li
Junhao Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junhao Shen', 18)}}的其他基金
von Neumann Algebras, Free Probability and Free Entropy
冯诺依曼代数、自由概率和自由熵
- 批准号:
0600887 - 财政年份:2006
- 资助金额:
$ 13.52万 - 项目类别:
Standard Grant
相似海外基金
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 13.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
$ 13.52万 - 项目类别:
Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
21H00987 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Model-free theory of finance based on game-theoretic probability
基于博弈论概率的无模型金融理论
- 批准号:
21K18585 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Free Probability and Cohomology in von Neumann Algebra Theory.
冯诺依曼代数理论中的自由概率和上同调。
- 批准号:
1762360 - 财政年份:2018
- 资助金额:
$ 13.52万 - 项目类别:
Continuing Grant
Operator Algebras, Operator Theory and Free Probability Investigations
算子代数、算子理论和自由概率研究
- 批准号:
1665534 - 财政年份:2017
- 资助金额:
$ 13.52万 - 项目类别:
Continuing Grant
Finite Factors, Free Probability, and Combinatorics in Operator Theory
算子理论中的有限因子、自由概率和组合学
- 批准号:
1362954 - 财政年份:2014
- 资助金额:
$ 13.52万 - 项目类别:
Continuing Grant
Analytic aspects of Cauchy transforms in free probability theory
自由概率论中柯西变换的分析方面
- 批准号:
214229211 - 财政年份:2012
- 资助金额:
$ 13.52万 - 项目类别:
Research Grants
Free probability theory and random matrices
自由概率论和随机矩阵
- 批准号:
238386-2006 - 财政年份:2010
- 资助金额:
$ 13.52万 - 项目类别:
Discovery Grants Program - Individual