Nonsymmetric, Noncommutative, Non-Lipschitz Problems for Scale Invariant Elliptic Operators

尺度不变椭圆算子的非对称、非交换、非 Lipschitz 问题

基本信息

  • 批准号:
    9706648
  • 负责人:
  • 金额:
    $ 9.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2000-12-31
  • 项目状态:
    已结题

项目摘要

9706648 Verchota The Principle Investigator wishes to study solutions to scale invariant elliptic equations in Euclidean spaces under modification of certain frequently assumed hypotheses, with the goal of better understanding the role they play. Hence, symmetry for systems of equations, non-commutativity or nonvariational formulation for higher order operators with bounded coefficients, or boundary values on non-Lipschitz boundaries will be considered. Harmonic analysis techniques, singular integrals over Lipschitz and non-Lipschitz boundaries, and modern elliptic Partial Differential Equation theory will be used. Though the proposal stays within the theoretic framework of elliptic PDE, the subject matter is related to applications in engineering, numerical analysis, and applied mathematics. Special cases of the equations considered have been used for some time to model, for example, the distribution of electrical charges, distribution of temperatures in a solid body, or the displacements an elastic body can undergo under stresses imposed on its outside surface or boundary. The emphasis here and recently on scale invariance allows for bodies that have arbitrary numbers of corners and edges (something that occurs naturally in many materials, e.g. in crystals). This is because the measure of angles remains the same whether the angles are viewed through a microscope or through the wrong end of a telescope, i.e. these very elementary quantities are scale invariant. In contrast, our idea of how smooth the surface of some material might be changes dramatically upon magnification, i.e. change of scale. By grounding our theory in quantities more elementary than those which describe smoothness and obtaining various results and estimates on the quantities modeled (temperature, etc.) we obtain a theory that can be applied both to bodies with rough boundaries or to bodies with smooth boundaries. The proposal can be seen as a search for other more elementary quantities leading to further generalizations or applications.
9706648 Verchota首席调查员希望研究欧氏空间中尺度不变椭圆方程解在某些经常假设的假设的修改下的解,目的是更好地了解它们所起的作用。因此,将考虑方程组的对称性,具有有界系数的高阶算子的非对易或非变分形式,或非Lipschitz边界上的边值问题。将使用调和分析技术,Lipschitz和非Lipschitz边界上的奇异积分,以及现代椭圆型偏微分方程理论。虽然该建议停留在椭圆形偏微分方程的理论框架内,但其主题与工程、数值分析和应用数学中的应用有关。所考虑的方程的特例已经被用来模拟一段时间了,例如,固体中的电荷分布、温度分布,或者弹性物体在施加在其外表面或边界上的应力作用下可能经历的位移。这里和最近强调的比例不变性允许物体具有任意数量的角和边(这是在许多材料中自然发生的事情,例如在晶体中)。这是因为无论是通过显微镜还是通过望远镜的错误一端观察角度,角度的测量都是相同的,即这些非常基本的量是比例不变的。相比之下,我们对某些材料表面光滑程度的看法在放大后发生了巨大变化,即比例的变化。通过将我们的理论建立在比那些描述平稳性的数量更基本的数量上,并获得对建模的数量(温度等)的不同结果和估计。我们得到了一个既可以应用于边界粗糙的物体,也可以应用于光滑边界的物体的理论。这一提议可以被看作是对其他更基本的量的探索,从而导致进一步的推广或应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Verchota其他文献

Gregory Verchota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Verchota', 18)}}的其他基金

Multidirectional Boundry Value Problems
多向边界值问题
  • 批准号:
    0401159
  • 财政年份:
    2004
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Maximum Principles and Dilation Invariant Estimates for Sobolev and Dirichlet Problems
数学科学:索博列夫和狄利克雷问题的极大原理和膨胀不变估计
  • 批准号:
    9401354
  • 财政年份:
    1994
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Maximum Principles and Best Contants for Some Problems in Elliptic PDE
数学科学:椭圆偏微分方程若干问题的最大原理和最佳常数
  • 批准号:
    9105407
  • 财政年份:
    1991
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Elliptic Boundary Value Problems and Maximum Principles on Nonsmooth Domains
数学科学:椭圆边值问题和非光滑域上的极大值原理
  • 批准号:
    8902447
  • 财政年份:
    1989
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Elliptic Boundary Value Problems and Maximum Principles on Nonsmooth Domains
数学科学:椭圆边值问题和非光滑域上的极大值原理
  • 批准号:
    8915413
  • 财政年份:
    1989
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Elliptic Boundary Value Problems on Nonsmooth Domains
数学科学:非光滑域上的椭圆边值问题
  • 批准号:
    8701619
  • 财政年份:
    1987
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
  • 批准号:
    2350508
  • 财政年份:
    2024
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Model theory of operators and noncommutative function theory
算子模型论和非交换函数论
  • 批准号:
    23KJ1070
  • 财政年份:
    2023
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
  • 批准号:
    2316892
  • 财政年份:
    2023
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
  • 批准号:
    2302447
  • 财政年份:
    2023
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Continuing Grant
Analysis of noncommutative rational functions in terms of free probability
用自由概率分析非交换有理函数
  • 批准号:
    22KJ1817
  • 财政年份:
    2023
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
  • 批准号:
    2302087
  • 财政年份:
    2023
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Continuing Grant
Noncommutative analysis for self-similar structure
自相似结构的非交换分析
  • 批准号:
    DP220101631
  • 财政年份:
    2022
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Discovery Projects
Noncommutative statistical mechanics: probability at the confluence
非交换统计力学:汇合处的概率
  • 批准号:
    EP/V048902/2
  • 财政年份:
    2022
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Research Grant
Noncommutative Algebraic Geometry
非交换代数几何
  • 批准号:
    RGPIN-2017-04623
  • 财政年份:
    2022
  • 资助金额:
    $ 9.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了