Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
基本信息
- 批准号:2350508
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides support for the 2024 Workshop in Noncommutative Geometry and Analysis that will be held at the California Institute of Technology, March 11 - 13, 2024. This is the next iteration of the annual workshop series, which began in 2022. The main goal of the workshop is to foster scientific and social interaction among early career mathematicians in various branches of mathematics, ranging from noncommutative geometry to geometric analysis. Recent advances in and interactions between these fields have given rise to a growing need for such a meeting specifically dedicated to these topics. This event is designed to have a relatively small number of participants, and it will provide a valuable platform for graduate students and postdocs to engage with current research frontiers in these areas.Many of the recent developments in noncommutative geometry, index theory, geometric analysis and mathematical physics have focused on problems related to scalar curvature, minimal surfaces, and mathematical general relativity. The main goal of this workshop is to promote a better understanding of those latest developments and their interrelationships. A recent program concerning scalar curvature has given rise to new perspectives and inspired a wave of recent activity in this area. The theory of minimal surfaces has made significant strides on old questions pertaining to regularity or existence questions, while uncovering new problems related to adjacent fields. In the field of general relativity, results using harmonic maps have improved our understanding of the classical Positive Mass Theorem. This workshop aims to facilitate communication among participants from those diverse fields, fostering opportunities for potential collaboration. More information is available at the workshop webpage, https://sites.google.com/view/ymncga-2024/homeThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antoine Song其他文献
Scalar curvature and volume entropy of hyperbolic 3-manifolds
双曲3流形的标量曲率和体积熵
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Demetre Kazaras;Antoine Song;Kai Xu - 通讯作者:
Kai Xu
Existence of infinitely many minimal hypersurfaces in closed manifolds
闭流形中无限多个最小超曲面的存在性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.9
- 作者:
Antoine Song - 通讯作者:
Antoine Song
Area rigidity of minimal surfaces in three-manifolds of positive scalar curvature
正标量曲率三流形中最小曲面的面积刚度
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Antoine Song - 通讯作者:
Antoine Song
On certain quantifications of Gromov’s
nonsqueezing theorem
关于格罗莫夫的某些量化
- DOI:
10.2140/gt.2024.28.1113 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Kevin Sackel;Antoine Song;Umut Varolgunes;Jonathan J. Zhu - 通讯作者:
Jonathan J. Zhu
Antoine Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antoine Song', 18)}}的其他基金
Sharp Eigenvalue Inequalities and Minimal Surfaces
锐特征值不等式和极小曲面
- 批准号:
2104254 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
智能网联环境下理论与数据融合驱动的新型非间断混合交通流建模方法研究
- 批准号:72371019
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向路网变点识别的非均质交通流协同控制方法研究
- 批准号:52372321
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
非完全信息下城市慢行交通系统安全评估方法研究
- 批准号:52302433
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向环境低影响路面的道路交通非尾气排放量化分析
- 批准号:52311530081
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
大数据环境下城市公共交通拥挤疏散的非均衡式强化学习定价策略研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
The geometry of orbits of noncommutative Hermann actions
非交换赫尔曼作用的轨道几何
- 批准号:
22K03285 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual