Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
基本信息
- 批准号:2350508
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides support for the 2024 Workshop in Noncommutative Geometry and Analysis that will be held at the California Institute of Technology, March 11 - 13, 2024. This is the next iteration of the annual workshop series, which began in 2022. The main goal of the workshop is to foster scientific and social interaction among early career mathematicians in various branches of mathematics, ranging from noncommutative geometry to geometric analysis. Recent advances in and interactions between these fields have given rise to a growing need for such a meeting specifically dedicated to these topics. This event is designed to have a relatively small number of participants, and it will provide a valuable platform for graduate students and postdocs to engage with current research frontiers in these areas.Many of the recent developments in noncommutative geometry, index theory, geometric analysis and mathematical physics have focused on problems related to scalar curvature, minimal surfaces, and mathematical general relativity. The main goal of this workshop is to promote a better understanding of those latest developments and their interrelationships. A recent program concerning scalar curvature has given rise to new perspectives and inspired a wave of recent activity in this area. The theory of minimal surfaces has made significant strides on old questions pertaining to regularity or existence questions, while uncovering new problems related to adjacent fields. In the field of general relativity, results using harmonic maps have improved our understanding of the classical Positive Mass Theorem. This workshop aims to facilitate communication among participants from those diverse fields, fostering opportunities for potential collaboration. More information is available at the workshop webpage, https://sites.google.com/view/ymncga-2024/homeThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为将于2024年3月11日至13日在加州理工学院举行的2024年非对易几何与分析研讨会提供支持。这是始于2022年的年度研讨会系列的下一次迭代。研讨会的主要目标是促进早期职业数学家在数学的各个分支之间进行科学和社会互动,从非对易几何到几何分析。这些领域的最新进展和相互作用日益需要专门讨论这些议题的这样一次会议。这次活动的参与者相对较少,它将为研究生和博士后提供一个宝贵的平台,让他们接触这些领域的当前研究前沿。非对易几何、指数理论、几何分析和数学物理的许多最新发展都集中在与标量曲率、极小曲面和数学广义相对论有关的问题上。这次讲习班的主要目标是促进更好地了解这些最新发展及其相互关系。最近一个关于标量曲率的计划产生了新的观点,并激发了这一领域最近的一波活动。极小曲面理论在有关正则性或存在问题的旧问题上取得了重大进展,同时揭示了与相邻领域相关的新问题。在广义相对论领域,使用调和映射的结果提高了我们对经典正质量定理的理解。这次研讨会旨在促进来自不同领域的参与者之间的交流,促进潜在的合作机会。研讨会网页上提供了更多信息,https://sites.google.com/view/ymncga-2024/homeThis奖反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antoine Song其他文献
Existence of infinitely many minimal hypersurfaces in closed manifolds
闭流形中无限多个最小超曲面的存在性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.9
- 作者:
Antoine Song - 通讯作者:
Antoine Song
Scalar curvature and volume entropy of hyperbolic 3-manifolds
双曲3流形的标量曲率和体积熵
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Demetre Kazaras;Antoine Song;Kai Xu - 通讯作者:
Kai Xu
On certain quantifications of Gromov’s
nonsqueezing theorem
关于格罗莫夫的某些量化
- DOI:
10.2140/gt.2024.28.1113 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Kevin Sackel;Antoine Song;Umut Varolgunes;Jonathan J. Zhu - 通讯作者:
Jonathan J. Zhu
Area rigidity of minimal surfaces in three-manifolds of positive scalar curvature
正标量曲率三流形中最小曲面的面积刚度
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Antoine Song - 通讯作者:
Antoine Song
Antoine Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antoine Song', 18)}}的其他基金
Sharp Eigenvalue Inequalities and Minimal Surfaces
锐特征值不等式和极小曲面
- 批准号:
2104254 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Type III Noncommutative Geometry and KK-theory
III 类非交换几何和 KK 理论
- 批准号:
RGPIN-2017-04718 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
The geometry of orbits of noncommutative Hermann actions
非交换赫尔曼作用的轨道几何
- 批准号:
22K03285 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
571975-2022 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
University Undergraduate Student Research Awards
Conference: Facets of Noncommutative Geometry
会议:非交换几何的方面
- 批准号:
2203450 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Random Noncommutative Geometry
随机非交换几何
- 批准号:
570071-2022 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral