Mathematical Sciences: Problems in Operator Algebra
数学科学:算子代数问题
基本信息
- 批准号:9706713
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Muhly Muhly will investigate a variety of problems in operator algebra that may be divided into three groups covered by the headings: General Operator Algebras, Groupoids, and Toeplitz and Related Operators. Under the first heading, he will pursue 5 strategic problems dedicated to understanding the structure of non-self-adjoint algebras. The focus will be on the categories of Hilbert modules associated with operator algebras. Inspiration for this derives from finite dimensional pure ring theory, but the key is to understand the interplay between the algebra and the metrics involved. In Muhly's work, groupoids provide concrete coordinates for representing operator algebras. The projects under this rubric are natural continuations of his earlier efforts. Most important among them, perhaps, is the problem of developing a good, topological cohomology theory for groupoids. The problems on Toeplitz operators that he proposes to investigate also derive naturally from his earlier work and progress on them should help shed light on important new connections between classical function theory/harmonic analysis and operator theory. Although in many respects, the detailed aspects of the problems Muhly will investigate are inspired by questions from core mathematics, their significance to applied mathematics and the "real world" is substantial. Much of Muhly's work contributes to the mathematical underpinning of control theory, H-infinity control theory, in particular, which, in turn, is the theoretical framework on which engineers base the design of aircraft, automobiles, robots, and other devices that need to respond to external stimuli and to be controlled to perform within specified guidelines. His work on groupoids and some of his work on Toeplitz operators is closely connected to issues of stochastic control, i.e., control problems where there are random uncertainties involved and one tries to steer a course that is best on the average. His work on operator algebras, generally, c ontributes to the field of multivariable control theory and to non-stationary control problems, i.e., problems where the control response is a function of the time of the input. Such problems are of increasing importance in the design of all types of devices, from acoustical filters, to digital processors, and neural networks.
抽象Muhly Muhly将调查各种各样的问题,在运营商代数,可分为三组所涵盖的标题:一般运营商代数,groupoid,和Toeplitz和相关运营商。 在第一个标题下,他将追求5个战略问题,致力于理解非自伴代数的结构。 重点将放在与算子代数相关的希尔伯特模的类别上。 这方面的灵感来自有限维纯环理论,但关键是要理解代数和度量之间的相互作用。 在Muhly的工作中,群胚提供了代表算子代数的具体坐标。 这个标题下的项目是他早期努力的自然延续。 其中最重要的,也许是问题的发展良好的,拓扑上同调理论的群胚。 问题Toeplitz运营商,他建议调查也自然来自他的早期工作和进展,他们应该有助于阐明重要的新的连接之间的经典函数理论/调和分析和运营商理论。 虽然在许多方面,问题的详细方面Muhly将调查的启发来自核心数学的问题,他们的意义,应用数学和“真实的世界”是实质性的。 Muhly的大部分工作都有助于控制理论的数学基础,特别是H ∞控制理论,这反过来又是工程师设计飞机,汽车,机器人和其他需要响应外部刺激并在指定指导方针内进行控制的设备的理论框架。 他的工作群和他的一些工作Toeplitz运营商是密切相关的问题,随机控制,即,控制问题,其中有随机的不确定性,并试图引导一个过程,是最好的平均。 他的工作算子代数,一般来说,贡献领域的多变量控制理论和非平稳控制问题,即,控制响应是输入时间的函数的问题。 这些问题在从声滤波器到数字处理器和神经网络的所有类型的设备的设计中越来越重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Muhly其他文献
Paul Muhly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Muhly', 18)}}的其他基金
Problems in the Theory and Application of Operator Tensor Algebras
算子张量代数理论与应用问题
- 批准号:
0355443 - 财政年份:2004
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
NSF-CBMS Regional Conference in the Mathematical Sciences "Graph Algebras: Operator Algebras We Can See", May 31-June 4, 2004
NSF-CBMS 数学科学区域会议“图代数:我们可以看到的算子代数”,2004 年 5 月 31 日至 6 月 4 日
- 批准号:
0332279 - 财政年份:2003
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
The Alliance for the Production of African American PhD's in the Mathematical Sciences: A Conference at Florida A&M
非洲裔美国数学科学博士培养联盟:在佛罗里达州举行的会议
- 批准号:
0120777 - 财政年份:2001
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Projects In Operator Algebra: Tensor Algebras, Coordinates, and Toeplitz Operators
算子代数中的项目:张量代数、坐标和 Toeplitz 算子
- 批准号:
0070405 - 财政年份:2000
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Aegean Conference in Operator Algebras and Application; August 17-27, 1996; Athens, Greece
数学科学:爱琴海算子代数及应用会议;
- 批准号:
9622991 - 财政年份:1996
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Projects in Operator Algebra
数学科学:算子代数项目
- 批准号:
9401174 - 财政年份:1994
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Projects in Modern Analysis
数学科学:现代分析项目
- 批准号:
9102488 - 财政年份:1991
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Projects in Modern Analysis
数学科学:现代分析项目
- 批准号:
8801329 - 财政年份:1988
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Projects in Operator Theory
数学科学:算子理论项目
- 批准号:
8502363 - 财政年份:1985
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Regional Conference on Automorphism Groups of Von Neumann Algebras and the Structure of Factors; Iowa City, Iowa; April 26-30, 1982
冯诺依曼代数自同构群和因子结构区域会议;
- 批准号:
8105322 - 财政年份:1982
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2022
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2021
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2020
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2018
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2017
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Summer Undergraduate Research for Students who are Deaf or Hard-of-Hearing in Applying Mathematical and Statistical Methods to Problems from the Sciences
REU 网站:针对聋哑或听力障碍学生应用数学和统计方法解决科学问题的暑期本科生研究
- 批准号:
1659299 - 财政年份:2017
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2016
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2015
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2014
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Grants Program - Individual
NSF/CBMS Regional Conference in the Mathematical Sciences: Uncertainty Principles in Harmonic Analysis: Gap and Type Problems
NSF/CBMS 数学科学区域会议:调和分析中的不确定性原理:间隙和类型问题
- 批准号:
1241272 - 财政年份:2012
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant