Mathematical Sciences: Aegean Conference in Operator Algebras and Application; August 17-27, 1996; Athens, Greece

数学科学:爱琴海算子代数及应用会议;

基本信息

  • 批准号:
    9622991
  • 负责人:
  • 金额:
    $ 1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-01 至 1997-07-31
  • 项目状态:
    已结题

项目摘要

9622991 MUHLY This is a request for travel support for junior investigators and graduate students to attend the conference, Aegean Conference in Operator Algebras and Applications, that is scheduled for the period, August 17, 1996, to August 27, 1996, at the University of the Aegean. With the advent of the theory of operator spaces, also known as "quantized functional analysis", general, not-necessarily-self-adjoint, operator algebras have achieved an ontological status comparable to that held by the self-adjoint operator algebras. Although the non-self-adjoint theory is not yet as well developed, from certain perspectives, the explosion of results that has taken place in the last six years, or so, deserves to be exposed in a fashion that will allow the uninitiated, particularly younger scholars, easy access to the basics of the subject from the current perspective. The objective of the conference is to provide a series of short courses, that will be published, designed to provide an overview of the theory of non-self-adjoint operator algebras and its relation to other areas of operator algebra and modern analysis. The themes to be stressed are: non-self-adjoint operator algebras, general theory; concrete operator algebras, particularly reflexive algebras; multivariable operator theory and representations of function algebras; metric variations on themes from algebra - Hilbert and operator modules; operator spaces and their applications to Banach space theory and harmonic analysis; operator algebraic approaches to quantum groups; non-self-adjoint operator algebras and wavelets. The theory of non-self-adjoint operator algebras plays a central role in the mathematical underpinnings of a lot of mathematics applied to areas of national need. For example, in the area of signal processing, which is used to transmit data and images involved in all fields of science - from space observatories to tomographs of the brain - fundamental constructs, such as the so-calle d Toeplitz matrices and wavelet transforms, obtain their deepest significance and are most clearly revealed when viewed from the perspective of operator algebra. Operator algebra lays bare their basic algebraic properties (how they are manipulated in practice) and metric properties as well (how they are measured). In oil exploration, which involves wavelets and signal processing in a somewhat different fashion, operator algebraic methods, known as commutant lifting play a fundamental role. Also, in control theory, particularly in the design of aircraft and noise abaters, the mathematics involved is to a large extent operator algebra. The breakthrough that took place about six years ago, and alluded to above, enables the practitioner of this field to bring to bare effectively the full power of modern algebra to tackle the most basic and fundamental structural questions. The advances in this field have been very exciting and more are to come. But it is time collect a summary of what is known, including bibliographies, so that new people can enter this exciting, emerging field of research.
9622991--这是初级调查人员和研究生参加定于1996年8月17日至1996年8月27日在爱琴海大学举行的爱琴海算符代数和应用会议的旅费。随着算子空间理论,也被称为“量子化泛函分析”的出现,一般的,不一定是自伴的,算子代数已经达到了与自伴算子代数相当的本体论地位。尽管非自伴理论还没有发展得那么好,但从某些角度来看,过去六年左右所取得的爆炸性成果值得以一种方式予以揭示,让初学者,特别是年轻的学者,能够很容易地从当前的角度接触到该学科的基础知识。会议的目的是提供一系列即将出版的短期课程,旨在概述非自伴算子代数的理论及其与算子代数和现代分析的其他领域的关系。要强调的主题是:非自伴算子代数,一般理论;具体算子代数,特别是自反代数;多变量算子理论和函数代数的表示;从代数-Hilbert和算子模的主题的度量变量;算子空间及其在Banach空间理论和调和分析中的应用;算子代数对量子群的方法;非自伴算子代数和小波。非自伴算子代数理论在许多应用于国家需要领域的数学基础中起着核心作用。例如,在用于传输涉及所有科学领域的数据和图像的信号处理领域--从空间天文台到大脑断层扫描--基本结构,如所谓的Toeplitz矩阵和小波变换,获得了最深的意义,从算子代数的角度来看,也最清楚地揭示了这一点。算子代数展示了它们的基本代数属性(它们在实践中是如何操作的)和度量属性(它们是如何被测量的)。在石油勘探中,以某种不同的方式涉及小波和信号处理,被称为交换提升的算子代数方法发挥着基础作用。此外,在控制理论中,特别是在飞机和消声器的设计中,所涉及的数学在很大程度上是算子代数。大约六年前发生的上述突破,使这一领域的实践者能够有效地发挥现代代数的全部力量,解决最基本和最基本的结构问题。这一领域的进展非常令人兴奋,而且还会有更多的进展。但现在是时候收集包括书目在内的已知信息的摘要了,这样新人就可以进入这个令人兴奋的新兴研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Muhly其他文献

Paul Muhly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Muhly', 18)}}的其他基金

Problems in the Theory and Application of Operator Tensor Algebras
算子张量代数理论与应用问题
  • 批准号:
    0355443
  • 财政年份:
    2004
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
NSF-CBMS Regional Conference in the Mathematical Sciences "Graph Algebras: Operator Algebras We Can See", May 31-June 4, 2004
NSF-CBMS 数学科学区域会议“图代数:我们可以看到的算子代数”,2004 年 5 月 31 日至 6 月 4 日
  • 批准号:
    0332279
  • 财政年份:
    2003
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
The Alliance for the Production of African American PhD's in the Mathematical Sciences: A Conference at Florida A&M
非洲裔美国数学科学博士培养联盟:在佛罗里达州举行的会议
  • 批准号:
    0120777
  • 财政年份:
    2001
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Projects In Operator Algebra: Tensor Algebras, Coordinates, and Toeplitz Operators
算子代数中的项目:张量代数、坐标和 Toeplitz 算子
  • 批准号:
    0070405
  • 财政年份:
    2000
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Operator Algebra
数学科学:算子代数问题
  • 批准号:
    9706713
  • 财政年份:
    1997
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Projects in Operator Algebra
数学科学:算子代数项目
  • 批准号:
    9401174
  • 财政年份:
    1994
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Projects in Modern Analysis
数学科学:现代分析项目
  • 批准号:
    9102488
  • 财政年份:
    1991
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Projects in Modern Analysis
数学科学:现代分析项目
  • 批准号:
    8801329
  • 财政年份:
    1988
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Projects in Operator Theory
数学科学:算子理论项目
  • 批准号:
    8502363
  • 财政年份:
    1985
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Regional Conference on Automorphism Groups of Von Neumann Algebras and the Structure of Factors; Iowa City, Iowa; April 26-30, 1982
冯诺依曼代数自同构群和因子结构区域会议;
  • 批准号:
    8105322
  • 财政年份:
    1982
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了